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Abstract

A Bayesian agent acting in a multi-agent environment learns to predict the
other agents’ policies if its prior assigns positive probability to them (in other
words, its prior contains a grain of truth). Finding a reasonably large class of
policies that contains the Bayes-optimal policies with respect to this class is
known as the grain of truth problem. Only small classes are known to have a
grain of truth and the literature contains several related impossibility results.
In this paper we present a formal and general solution to the full grain of truth
problem: we construct a class of policies that contains all computable policies
as well as Bayes-optimal policies for every lower semicomputable prior over the
class. When the environment is a known repeated stage game, we show conver-
gence in the sense of [KL93a] and [KL93b]. When the environment is unknown,
Bayes-optimal agents may fail to act optimally even asymptotically. However,
agents based on Thompson sampling converge to play ε-Nash equilibria in ar-
bitrary unknown computable multi-agent environments. Finally, we include an
application to self-predictive policies that avoid planning. While these results
are purely theoretical, we show that they can be computationally approximated
arbitrarily closely.
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1 Introduction

We will consider the behavior of Bayesian players engaged in infinite games. This is
a core problem of game theory, but because of reflective difficulties the first rich class
of solutions grounded in rigorous decision theory has only recently been proposed
[LTF16]. According to the standards of rational behavior derived by von Neumann
and Morgenstern [NMR44], players should act to maximize their expected utility.
This requires each individual subject among the players to maintain and update beliefs
about all other players’ strategies, which presumably depend on their reasoning about
the subject’s strategy. This well studied infinite recursion gives rise to the grain of
truth problem [KL93a]: how can one construct a consistent set of beliefs for each
player such that they all assign nonzero probability to each others’ Bayes-optimal
strategies? This problem is known to be difficult, with many impossibility results
(e.g. [Nac97; Nac05; FY01]).

Solution overview. Using the recently invented concept of a “reflective oracle”
[FTC15] one can construct priors that overcome this difficulty and are even limit-
computable. Intuitively, reflective oracles allow algorithms to make predictions about
their own behavior, which would normally be impossible because of diagonalization.
We will introduce reflective oracles and show how they can be used to construct a class
of probability measures PO

refl in Section 4. In Section 5 we show that when strategies
are chosen in PO

refl, each player’s “subjective environment” is reflective-oracle com-
putable and they have an optimal policy in PO

refl (Theorem 15 and Theorem 18).
This allows us to construct an interesting reflective-oracle computable Nash equilib-
rium in Theorem 19. To model players’ uncertainty about the strategies they face
we construct a dominant “mixture” policy ζ ∈ PO

refl in Section 7 Theorem 20, which
is the final step to establish the grain of truth property classes in our strict sense.
This allows us to satisfy the conditions of [KL93a], proving that Bayesian players
with beliefs supported on PO

refl will converge to an ε-Nash equilibrum in an infinitely
repeated stage game; this is a particularly surprising result because mixed strategy
Nash equilbria arise naturally despite the fact that Bayesians are not a priori re-
quired to randomize. Finally, we address the general case that players do not know
either the game or their opponents’ strategies, but only know the classes the game
and strategy are drawn from. We establish a grain of truth property for this case
showing that Thompson sampling versions of the Bayes-optimal strategies are in the
strategy class, so are assigned non-zero probability. This allows us to use single-agent
asymptotic optimality results for Thompson sampling in an unknown environment to
prove convergence to a ε-Nash equilibrium:

There is a class of limit-computable strategies satisfying the grain of
truth property with respect to any computable game, and it includes limit-
computable strategies that converge to a ε-Nash equilibrium even when the
game is unknown.
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A brief outline of the paper including dependencies between major theorems appears
below.

Contributions. We solve the long-standing grain of truth problem by introducing a
class of reflective-oracle computable strategies. This allows us to establish convergence
of Bayesian players to ε-Nash equilibrium in known repeated games, followed by
convergence for Thompson sampling strategies on unknown games. The rigor and
elegance of proofs are improved over the conference version of this paper [LTF16] by
extending reflective oracles to non-binary alphabets with “types” for distinct action
and percept spaces. We also include a novel application of the machinery developed
for the grain of truth problem to answer a question posed in [Cat+23], constructing
a self-predictive agent with consistent beliefs about its own policy and suggesting a
direction for further research. All results are shown to be limit-computable.
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2 Mathematical Preliminaries

Notation. A∗ is the set of finite strings x over a finite set of alphabet symbols
a ∈ A. We will use xt ∈ A to denote the tth element of such a string (indexing from
1) and x1:t = x≤t is the substring x1x2...xt ∈ A∗; x<t and x ̸=t are defined analogously.
The string xy is the concatenation of x and y. We bars |·| are overloaded, representing
length for strings, cardinality for sets, and absolute value for reals. While the index t
is reserved for “temporal” indexing such as elements of an ordered string or sequence,
we will reserve n for the number of players in a game and 1 ≤ i, j ≤ n for the
indices of (respectively current and other) players in the game. We will use T to
denote the set of probabilistic Turing machines with oracle access. We will use ∆
to represent a probability simplex; for example ∆A is a probability distribution on
A. For probability measures µ, ν we write “µ is absolutely continuous w.r.t. ν” as
µ≪ ν. The Iverson brackets [[R]] are 1 when R is true and 0 when R is false (they cast
booleans to integers). Further notation will be introduced as needed; see Appendix A
for a complete list.

We will need the following computability levels from the arithmetic hierarchy.

Definition 1 (computability) A function f is

• (finitely) computable (or recursive) if it is computed by some Turing machine.
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• estimable if there is a computable function ϕ(x, k) such that ∀k|f(x)−ϕ(x, k)| <
1
k
. That is, f can be approximated to arbitrary pre-specified precision.

• lower semicomputable (l.s.c.) if there is a computable function ϕ(x, k) mono-
tonically increasing in its second argument with limk→∞ ϕ(x, k) = f(x). That
is, f can be approximated from below.

• limit-computable (or approximable) if there is a computable function ϕ(x, k)→
f(x) for k → ∞. That is, f can be approximated to arbitrary but unknown
precision.

An estimatable function is always l.s.c.: If ϕ estimates f , then ϕ′(x, k′) :=
maxk≤k′{ϕ(x, k)− 1

k
} lower semicomputes f(x). Estimable functions are often called

‘computable’ but we find it safer to not overload the term.

Definition 2 (semimeasure)
A semimeasure ν is a function A∗ → R+ satisfying ν(x) ≥

∑
a∈A ν(xa).

For our purposes semimeasures always assign probability 1 to the empty string ε.
Because algorithms do not always halt, the objects of algorithmic probability are often
semimeasures with probability gaps arising from non-halting behavior. Semimeasures
are designed for sequence prediction and assign a (defective) probability to observing
a sequence starting with string x. Another viewpoint more in line with measure
theory is that x represents the cylinder set Γx including all infinite continuations of x.
It should be noted that there is not a standard well-defined extension of semimeasures
to arbitrary sets of infinite strings analogous to Carathéodory’s extension theorem for
measures. Constructing such an extension or proving its impossibility is an interesting
and apparently open problem [HQC24, Sec.2.8.2].

3 The Grain of Truth Problem

Problem statement. The grain of truth problem concerns a set of n players en-
gaged in a multi-player game σ in some (countable) class of games G. Each player
believes that the other players’ strategies are drawn independently from a (countable)
policy class P . Then it is natural to ask whether under some choices of prior over
P , a Bayesian optimal strategy for each player is itself in P . In other words, we
are seeking conditions that make the players’ beliefs about each other “consistent”
and subjectively optimal. We can also view this as a single agent interacting with
an environment ν which consists of game σ combined with the remaining agents (in
contrast to games, environments have only one “player”). If and only if (G,P) con-
tain a grain of truth in the above sense, the condition that the true environment is
µ ∈ M is satisfied. Consider a multi-agent setup where n agents interact with
each other via a common environment in rounds. In game-theoretic parlance, player
i follows some mixed strategy πi from some class of strategies P . The extensive-form
“game” σ they are “playing” also includes observations and rewards to the agents,
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where the utility is the expected discounted reward sum. Conventionally a repeated
known game and Nash equilibria are considered. We deal with this case only as a
stepping stone to our much more general setting: Our main setting and results con-
sider one long extensive-form game which is only known to belong to a countable
class of games G, and essentially no structural assumptions are made on G. We also
do not assume that players play Nash equilibria. Player i only assumes that the
others’ policies πj ∈ P and that the game σ ∈ G1. From player i’s perspective, he
interacts with an environment σi that consists of game σ ∈ G and a strategy profile
π ̸=i := (π1, ..., πi−1, πi+1, ..., πn) ∈ Pn−1 of the other players j ̸= i. Player i does not
know σ and does not assume that π ̸=i is a Nash strategy, so needs to infer both from
the experienced interaction history h<t. This setup is more realistic in that it allows
to model agents that learn from experience and do not assume any particular strategy
(e.g. Nash) of their “opponents” beyond being in P , and do not need to know the
game they are playing. This is the multi-agent version of the optimal history-based
reinforcement learning agent AIXI [Hut05; HQC24], and it can model very general
problems. For instance, player i may face sub-optimal or colluding or cooperative
opponents.

A Bayesian learner chooses Bayes-optimal actions w.r.t. the Bayes-mixture over
(σ, π ̸=i) w.r.t. some prior w over G×Pn−1. If there is such a Bayes-optimal strategy in
P , we say that G,P satisfies the grain of truth property with respect to this choice of
prior. There are general theorems which show that (a Thompson-sampling version of)
the Bayes-optimal strategy π∗

i is asymptotically optimal in the sense that it converges
to the optimal (informed) agent who knows the environment (here σ, π ̸=i). This single-
agent view is asymmetric in that it singles out one (Bayes-optimal) agent i against
n− 1 agents from some class P . A symmetric treatment requires agent i to consider
the possibility that the other agents j ̸= i are also Bayes-optimal agents π∗

j . This
consideration is formally satisfied iff (the Thompson sampling version of) π∗

j is itself
in P with a non-zero prior w(π∗

j ) > 0. We say that (P ,G, w) contains a grain of truth
if this condition is satisfied. The grain of truth problem is the question of whether
there exist interesting classes (P ,G) that contain a grain of truth.

As a special case, we construct an interesting policy class satisfying the conver-
gence conditions of [KL93a] in known infinitely repeated games. For these purposes,
we prove a weak form of the grain of truth property, formally:

Definition 3 (Grain of truth property) Given a class of policies=strategies P
and a class of games G, consider a vector of policies π = (π1, ..., πn) ∈ Pn. Hold
out one player i and construct the environment σπ

i it is interacting with (the game
σ together with the other players’ j ̸= i strategies). Let player i’s beliefs about his
environment be described by the Bayesian mixture environment ξi. Let π∗

ξi
be the

1In Section 9 the players’ belief distributions can be made in a sense even more general, taking
a mixture over a class of subjective environments that includes any combination of a game from G
and opponent strategies from P, but need not explicitly draw a distinction between an opponent
and any other part of the environment.
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optimal response strategy. We say that (P ,G) contains a grain of truth iff ∀i, ∀π ̸=i ∈
P , ∀σ ∈ G, σπ

i ≪ ξi and π
∗
ξi
∈ P .

This is the property we will need to show convergence to ϵ-Nash equilibrium
in a known game. The condition σpii ≪ ξi can be satisfied by choosing ξi as an
explicit Bayesian mixture over G×Pn−1 with weights wi, in which case it makes sense
to say that (P ,G, w) satisfies the grain of truth property, but this is not required
by Definition 3. For unknown games (G ≠ {σ}) we need a stronger property for
convergence:

Definition 4 (Strong grain of truth property) Given a class of poli-
cies=strategies P and a class of games G, let player i’s beliefs about his environment
be described by the Bayesian mixture ξi with weights wi(ν) > 0 for ν ∈ M. Let
π∗
ξi

be the optimal response strategy. We say that (P ,G) and specifically (P ,G, w)
contains a strong grain of truth iff ∀i, ∀π ̸=i ∈ P , ∀σ ∈ G, σπ

i ∈M and π∗
ξi
∈ P .

In fact, we need the “Thompson sampling version” of Definition 4, obtained by
replacing π∗

ξi
by the Thompson sampling strategy πTS in the final condition. It is

clear that the strong grain of truth property is in fact stronger than the grain of truth
property; it implies not only absolute continuity but even bounded Radon-Nikodym
derivative dσπ

i /dξi ≤ wi(σ
π
i )

−1.

History of the grain of truth problem. Progress towards discovering rich strat-
egy and game classes satisfying the grain of truth property has been slow. After
[KL93a] introduced the grain of truth property in the context of infinitely repeated
games and independent strategies, along with a simple prisoner’s dilemma example,
many impossibility results were proven ([Nac97; Nac05; FY01]). Much later, [FTC15]
introduced reflective oracles, laying the groundwork for a solution (but only consid-
ering stage games and not the grain of truth property). This work was extended to
sequential decision theory by [FST15], but [LTF16] (the conference version of this pa-
per) was the first to solve the grain of truth problem. However, Leike et al. focused on
convergence in unknown games which required Thompson sampling strategies instead
of the Bayesian strategies of [KL93a]. As a result they did not correctly formulate
or prove a solution to Kalai and Lehrer’s problem. We provide such a solution along
with more elegant and complete proofs of many of Leike et al.’s other results.

Strategies. We can model strategies as a family of measures for each sequence of
observations in a player’s information set. The probabilities of the first t actions can
only depend on observations available before time t. This is sometimes referred to
as a “chronological contextual” measure [HQC24]. Typically, we will show that our
grain of truth classes P contain a “dominant” mixture policy ζ ∈ P such that ∀π ∈ P ,
∃c ∈ R+ satisfying ζ ≥ cπ. In that case, each player may express their belief that the
others choose some strategy in P by modeling their strategies as ζ (this is essentially
Kuhn’s theorem [Aum64]; see also [Ale]). In the case that each player has a different
action set it is necessary to generalize this problem by indexing the policy classes by
player as (Pi)1≤i≤n.
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Reinforcement learning Game theory

stochastic policy mixed strategy
deterministic policy pure strategy
agent player
multi-agent environment infinite extensive-form game
reward payoff/utility
(finite) history history
infinite history path of play

Table 1: Terminology dictionary between reinforcement learning and game theory
from [LTF16].

Multi-player games. Formally, a multi-player game is a chronological contextual
measure. Given a sequence of action vectors at = (a1t , a

2
t , ..., a

n
t ) ∈ An, a game σ

assigns a probability to the sequence of perception vectors et = (e1t , e
2
t , ..., e

n
t ) =

(o1t r
1
t , o

2
t r

2
t , ..., o

n
t r

n
t ) ∈ En including observations oit and rewards rit ∈ [0, 1]. This is

written σ(e≤t||a≤t).

Examples. Any Nash equilibrium of a game σ with strategy πi for each player i is
a trivial “solution” to the grain of truth problem with G = {σ}, Pi = {πi}, but this is
not very interesting for our purposes because it does not necessarily model learning.

A basic but non-trivial example is discussed [KL93a]; consider an infinitely re-
peated prisoner’s dilemma. In every time step the payoff matrix is as follows, where
C means cooperate and D means defect.

C D
C 3/4, 3/4 0, 1
D 1, 0 1/4, 1/4

Let the strategy class be P = {gt}t∈N∪{∞} where gt is a grim trigger strategy that
punishes defection by defecting indefinitely, but by default cooperates until time t and
defects afterwards. It is fairly easy to see that regardless of a player’s prior belief wt

in each gt, once he or his opponent has defected, any strategy in P continues to defect
indefinitely, so he expects his opponent to certainly defect. The Bayes optimal (and
strictly dominant) strategy for him is therefore to defect from that point on, which
is itself a grim trigger strategy. Depending on his priors wt, he may also expect his
opponent to very likely defect at time td <∞ despite continued cooperation for t ≤ td,
in which case his optimal policy may be gtd−1. Not only does this (P ,G) = (P , {σ})
satisfy the strong grain of truth property, (P ,G, w) satisfies the strong grain of truth
property for any choice of wi supported on {σπ|π ̸=i ∈ Pn−1}. The catch is that G is
only a single (known) environment.

For a much larger (non)example, the class containing all strategies naively appears
to satisfy the grain of truth property, but in any nontrivial infinite game it is not
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countable and certainly has no dominant strategy, so it is usually not possible to
define a useful prior over this class.

Action/perception encodings. The settings we will discuss restrict players and
games to be represented by probabilistic Turing machines, so that they accept the
interaction history on an input tape and stochastically produce an action or observa-
tion on the output tape. The symbolic representation of the history on these tapes
can become important. We require it to be uniquely decodeable into actions and
observations (for instance, by devoting a consistent number of symbols to each action
and observation). We will denote the representation of any object s as ⟨s⟩ and assume
that ⟨ai1ei1...aiteit⟩ = ⟨ai1⟩⟨ei1⟩...⟨ait⟩⟨eit⟩. The simplest “highly granular” representation
is to use a unique symbol for each eit ∈ E2 and a unique symbol for each ait ∈ A.
Conceptually these symbol sets should be disjoint, but it is always possible to de-
termine which is which by indexical position. By the compositionality properties of
Turing machines, if a player’s opponents have computable strategies and the game is
computable, we can construct a Turing machine to simulate both the opponents and
the game from his perspective; this forms a computable subjective environment.

Using the terminology introduced above, we can rephrase our main result as follows:

Theorem 5 (limit-computable convergence to equilibrium) There are limit-
computable (Thompson sampling) strategies π1, ..., πn such that for any computable
multi-player game σ and for all ε > 0 and all i ∈ {1, ..., n} the σπ1:n-probability that
the policy πi is an ε-best response converges to 1 as t→∞.

4 Reflective Oracles

Rational players can face an infinite regress in which each mutually reasons about the
other’s reasoning. For instance, if each player’s strategy is computed by a commonly
known Turing machine, it would seem to be rational to run the other players’ ma-
chines to predict their behavior and choose the utility maximizing response. When
the other players’ Turing machines halt, this is computable. Unfortunately, if all
players attempt this strategy there is mutual recursion as player 1 simulates player 2
simulating player 1 ad infinitum3. Classically this interdependence of optimal strate-
gies is resolved by assuming players will choose a Nash equilibrium, but this is not a
Bayesian optimality notion because it is not clear why players should learn to play any
particular equilibrium strategy. To model the (subjective) uncertainty of Bayesian

2A perception can be encoded as a single symbol as long as the observation and reward can be
computably extracted.

3An amusing example of this behavior appears in William Goldman’s “The Princess Bride,”
when Vizzini attempts to determine which of two cups Westley poisoned by speculating about what
Westley will think Vizzini thinks about Westley. This is isomorphic to the game of matching pennies
described in Section 7
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players, as well as intentionally randomized behavior strategies, we will use proba-
bilistic Turing machines (pTM’s). Formally, a probabilistic Turing Machine (pTM) is
a Turing Machine with access to both the ordinary input, output, and work tapes and
an additional infinite tape initialized with random bits. To cut through the infinite
regress and allow players to consistently reason about each others’ strategies, we will
allow all pTM’s access to the same “reflective” oracle. In this section we show how
pTM’s model probability distributions (such as behavior strategies) and introduce re-
flective oracles. Combining these two ideas to construct pTM’s with reflective oracle
access, we establish some basic computability properties that lay the foundations for
the rest of the paper.

Tape alphabet. For simplicity, we will begin with input and output tapes having
the same alphabet A, but the theory can easily be extended to include differing input
and output alphabets.

Sampling from a pTM. Probabilistic Turing machines are interpreted as comput-
ing conditional probabilities. For a pTM T , we define λT (α|x) to be the probability
that on input x, T produces the symbol α (and nothing else). Then we can define a
semimeasure

λT (x) =

|x|∏
t=1

λT (xt|x<t) (1)

This is not in general a proper probability measure because there is some chance
that the pTM does not halt or produces an invalid output. Later, we will find an
interesting way to use reflective oracles to complete these semimeasures to probability
measures.

Oracle access. Oracle access means that the pTM’s can write a query on an or-
acle tape and enter a special state that queries the oracle, with the next transition
depending on the oracle’s output. We show in Appendix E, Theorem 44 that for any
pTM T , λT has l.s.c. conditionals. It is possible to invert this construction, and the
other direction (Theorem 45) works even when machines have access to oracles. We
define λOT (α|x) as the probability that the oracle pTM T with access to O returns α
on input x. The semimeasure λOT is defined analogously to before. We will use the
symbol ν to represent arbitrary semimeasures.

Theorem 6 (l.s.c. semimeasures vs pTM semimeasures)
A semimeasure ν has l.s.c. conditionals iff there exists a pTM T such that ν = λT

Proof. sketch (detailed proof in Appendix E):
(⇐) That the conditionals of λT are l.s.c. is rather straight-forward from their con-
struction.
(⇒) Let ϕα(x, k) be computable and monotone increasing in k converging to ν(α|x)
for α ∈ A = {1, ..., d}. Consider a pTM T implementing the following procedure: Let
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∆α(k) := ϕα(x, k)− ϕα(x, k − 1) ≥ 0 with ϕα(x, 0) := 0. Then chop

successive intervals I1(1), ..., Id(1), I1(2), ..., Id(2), I1(3), ...

of lengths ∆1(1), ...,∆d(1),∆1(2), ...,∆d(2),∆1(3), ...

from interval [0; 1). All-together these intervals cover [0;
∑

α ν(α|x)) ⊆ [0; 1). Let ω1:∞
be uniform random bits. Let T output α if ∃k : [0.ω1:k; 0.ω1:k + 2−k) ⊆

⋃∞
k′=1 Iα(k

′).
For 0.ω <

∑
α ν(α|x), the condition can be tested effectively by running through k =

1, 2, 3, ... while only finitely many k′ need to be checked. The procedure terminates in
finite time, since the interval on the l.h.s. shrinks to a point (0.ω) for k →∞, hence
eventually is contained in some Iα(k

′). This procedure outputs α with probability
ν(α|x), since

P [0.ω ∈
⋃∞

k′=1 Iα(k
′)] = |

⋃∞
k′=1 Iα(k

′)| = limk→∞
∑k

k′=1∆α(k
′) = limk→∞ ϕα(x, k) = ν(α|x)

For 0.ω ≥
∑

α ν(α|x) no k is found, and T runs forever with no output (which is
fine).

O-sampled conditionals. Without O access, Theorem 6 shows that a semimea-
sure has l.s.c. conditionals iff it is sampled by a pTM. However, because the oracle
O may be probabilistic, it is not clear that the ⇐ direction still holds with oracle
access. Therefore, we will avoid Leike et al.’s [LTF16] potentially misleading termi-
nology “l.s.c. with oracle access” for these semimeasures. Instead, we will say that a
semimeasure µ has O-sampled conditionals (or “is O-sampled” for brevity) if there is
a pTM T such that µ(α|x) = λOT (α|x) for α ∈ A.
O-estimable conditionals. Following the convention set by “O-sampled” condi-
tionals, we will use the term “O-estimable” conditionals to refer to semimeasures that
have conditional probabilities estimable with O access. When it is clear from context
we will drop the word “conditionals.”

Formalizing oracles. For our purposes, oracles always answer queries with 0 or 1
(which can be interpreted as false or true). Because they are allowed to (indepen-
dently) randomize their answers on queries, an oracle’s behavior is specified by its
probability of answering 1. This means we can treat oracles as functions to the unit
interval.

Definition 7 (reflective oracle) An oracle O : T × A∗ × (Q ∩ [0, 1]) ×A → [0, 1]
is called reflective iff for each pTM T and string x ∈ Σ∗, ∃{qα}α∈A satisfying the
following properties: ∑

α∈A

qα = 1 (2)

And for all α ∈ A and p ∈ Q,

λOT (α|x) ≤ qα ≤ 1−
∑
β ̸=α

λOT (β|x)
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Oα(T, x, p) = 1 for p < qα

Oα(T, x, p) = 0 for p > qα

This is the same as Definition 32 restated to take advantage of our λOT notation.
We will often abbreviate “reflective oracle” as rO.

We will reserve the notation Oα(T, x, p) → 0 (respectively 1) for the event that
reflective oracleOα called on the query (T, x, p) yields response 0 (respectively 1). This
occurs with probability Oα(T, x, p) by definition, so “calling” Oα(T, x, p) is equivalent
to invoking flip(Oα(T, x, p)) where flip(p) is a function that returns 1 with probability
p and 0 with probability 1− p.

Because of equation (2), qα can be viewed as a conditional probability assignment
for each symbol α ∈ A. When λOT is a measure, the query (T, x, p) can be viewed
as asking the question “is (case 0) p > λOT (α|x) or (case 1) p < λOT (α|x)?” then O’s
answers are consistent with qα = λOT ; always 1 when p < qα and 0 when p > qα,
but allowed to randomize when p = qα exactly. This randomization means that qα
cannot be determined exactly and avoids diagonalization. When λOT is only a defective
semimeasure, its conditionals do not sum to 1 so cannot satisfy equation (2), which
means that qα ̸= λOT (α|x); however the definition requires at least qα ≥ λOT (α|x). This
means that O “redistributes” the non-halting probability mass of TO and completes
λOT to a measure. The requirement qα ≤ 1 −

∑
β ̸=α λ

O
T (β|x) is actually redundant

because it follows from qα ≥ λOT (α|x) and
∑

α∈A qα = 1. The existence of reflective
oracles on non-binary alphabets is proven in Appendix B.

Fallenstein et. al. originally defined reflective oracles for a binary alphabet in an
analogous way [FTC15]. Leike [LTF16] used a more general definition which allowed
O to randomize arbitrarily in the entire range λOT (α|x) to 1−

∑
β ̸=α λ

O
T (β|x)4. When

it is necessary to distinguish between the two cases we will call reflective oracles
satisfying Fallenstein et. al.’s and our stricter definition “step reflective oracles.”

Let λ̄OT be the completion of λOT by a reflective oracle O, with λ̄OT (α|x) = qOα,T,x,
where qOα,T,x = qα as defined in Definition 7. This is a properly normalized proba-

bility measure by equation (2). Note that λ̄ is a function of O and T (producing a
measure). The completion (bar) is not applied as an operator to λOT , because many
different pTM’s may produce the same semimeasure which can be completed in dif-
ferent ways. For example when T does not make oracle calls and λOT = λT is defective
(say, 0 everywhere) it can be completed arbitrarily with appropriate choice of rO as
mentioned in Appendix B.

Theorem 8 (properties of λ̄O
T ) For any pTM T , λ̄OT is an O-estimable probability

measure. In particular, there is an oracle pTM BT estimating λ̄OT that is computably
constructable from T .

4This definition is only specified for the binary case and is not easy to directly extend to the
non-binary case. It is possible that Leike adopted the more general definition to simplify his proof
of limit-computability.

11



Proof. Given any reflective oracle O, for each pTM T , and string x there are particular
(clearly unique) values qOα,T,x satisfying the above requirements for qα. There is a
pTM BT with O access that conducts a binary search for qOα,T,x by using queries to
O to determine whether each p is above or below qOα,T,x. This process may behave
stochastically if qOα,T,x itself is ever a query, but the limit is always correct. Since the
range of possible values for qOα,T,x halves with each query, it is O-estimable.

Notably, our procedure for estimating λ̄OT does not involve simulating T as in the
procedure to l.s.c. λT (which does not work with oracle access), but only uses the
description of T to run the binary search BT . This is related to λOT only because
reflectivity of O leads to λ̄OT ≥ λOT .

Reflective Oracles and Diagonalization. Let T ∈ T be a probabilistic Tur-
ing machine with a two symbol output alphabet A = {α, β} that outputs β if
Oα(T, ϵ, 1/2) → 1 and α if Oα(T, ϵ, 1/2) → 0. (T can know its own source code
by quining [Kle52, Thm. 27]). In other words, T queries the oracle about whether
it is more likely to output α or not, and then does whichever the oracle says is less
likely. In this case we can use an oracle Oα(T, ϵ, 1/2) := 1/2 (answer 0 or 1 with equal
probability), which implies λOT (α|ϵ) = λOT (β|ϵ) = 1/2, so the conditions of Definition 7
are satisfied. In fact, for this machine T we must have Oα(T, ϵ, 1/2) = 1/2 for all
reflective oracles O.

Theorem 9 (pTM for λ̄O
T ) For any reflective oracle O, all O-estimable semimea-

sures are O-sampled. In particular, for any pTM T , λ̄OT is O-sampled.

Proof. Any estimable function is also l.s.c. since the lower bound of the estimate can
be used as the approximation from below. This means that the sampling algorithm
(Algorithm 7) can be used to sample from any O-estimable probability measure (in
this case halting with probability 1). Therefore, λ̄OT is also O-sampled; assuming that
pTM S implements the sampling algorithm and accepts its argument ϕα in the form
of a pTM encoding, and that the binary search pTM BT returns the low end of its
interval estimates, λ̄OT = λOS(BT ,·).

More succinctly, “O-estimable conditionals” implies “O-sampled conditionals”.
The converse does not hold because a semimeasure is not necessarily equal to its
completion, but the converse does hold for probability measures. See Appendix D for
proofs using Leike et al.’s definition.

Lemma 10 (all estimable measures O-sampled) For any (joint) estimable mea-
sure ν there exists one pTM T such that ν = λ̄OT regardless of the choice of reflective
oracle O.

Proof. This theorem is a stronger version of Theorem 9 that applies when ν is es-
timable without oracle access, but requires only ν(x) to be estimable, not the con-
ditional ν(·|x). Let T sample its output α from an estimate of ν(xα)/ν(x). This is
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estimable except when ν(x) = 0, so for ν(x) ̸= 0, λOT (α|x) = ν(α|x). When ν(x) = 0,
T may never halt and O completes λOT (·|x) in some arbitrary way. This only affects
conditionals for strings that already have probability 0 so the product defining λ̄OT
still assigns all continuations probability 0 and λ̄OT = ν.

The original construction of O in [FTC15] involved a non-constructive fixed-point
argument implicitly invoking a continuous “hierarchy” of oracles. It looked like that
λ̄OT may not even be expressible within the arithmetic hierarchy. Surprisingly, we
can choose O so that λ̄OT is limit-computable (without requiring O access, instead
limit-computing O) by the following result:

Theorem 11 (a limit-computable reflective oracle [LTF16, Thm.6])
There is a limit-computable (binary alphabet) reflective oracle.

We show in Theorem 43 that there are also limit-computable non-binary alphabet
reflective oracles.

5 Multi-Player Games

Now we are ready to formally define multi-player games and strategies. We will show
how multi-player games give rise to a subjective environment for each player. We
refer to Bayes-optimal strategies in a subjective environment as Bayesian strategies
in the associated multi-player game. Next we use the computability results established
in Section 4 to introduce reflective-oracle computable strategies and show they are
effectively enumerable, which prepares us to describe players’ beliefs with Bayesian
mixture strategies. Together these results allow us to describe Bayesian players who
believe that strategies are rO-computable.

5.1 Definitions

We define multi-player games following [LTF16, Sec.7.3]: In a multi-player game,
n players take sequential actions from A independently and in parallel. In step t,
the game receives a vector of actions at ∈ An where action ait ∈ A corresponds to
player i. The history of actions including at determines a stochastic “move by nature”
containing an n percept vector et ∈ En where player i only sees eit ∈ E . Players can
only see their own actions (though of course the percept might include the other
players’ actions in some games). As before, eit = oitr

i
t where r

i
t ∈ [0, 1] is a reward.

Formally,

Definition 12 (multi-player game) A multi-player game is a function

σ : (An × En)∗ ×An → ∆(En)
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agent π1

agent π2

...

agent πn

multi-player
game σ

a1t

e1t
a2t

e2t

ant

ent

Figure 1: Agents π1, . . . , πn interacting in a multi-player game.

The interaction of the player strategies π = (π1, π2, ..., πn) with the multi-player
game σ induces a history distribution σπ = σπ1:n where

σπ(ε) := 1

σπ(æ1:t) := σπ(æ<tat)σ(et|æ<tat)

σπ(æ<tat) := σπ(æ<t)
n∏

i=1

πi(a
i
t|æi

<t)

Because players choose their actions simultaneously, the action distributions at
time t are independent conditional on the action observations history æi

<t :=
ai1e

i
1a

i
2e

i
2...a

i
t−1e

i
t−1, so we take a product. The history distribution for player i is

the history distribution σπ marginalized over the actions and observations of the
other players:

σπ
i (æ

i
<t) :=

∑
æj

<t,j ̸=i

σπ1:n(æ<t)

The subjective environment σi(e
i
t|æi

<ta
i
t) = σπ

i (e
i
t|æi

<ta
i
t) for single player/agent i is

actually independent of πi (see Appendix F), though it does depend on πj for j ̸= i.
Therefore we will sometimes use σπ

i to refer to the subjective environment. In
the single agent-environment setting [Hut05] σi corresponds to the true environment
which we write as µ ∈M and no superscripts i.

Definition 13 (environment) An environment µ is a chronological action-
contextual measure. Equivalently, µ can be specified by its conditional probabilities
µ(·|h<tat) ∈ ∆E given every history h<t = a1e1...at−1et−1 that it assigns a nonzero
probability.
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5.2 Strategies

Definition 14 (reflective-oracle computable strategies) Given a reflective or-
acle O for action space A and pTM’s with alphabet Σ = A

⊔
E5, so that O′s second

argument is in Σ∗ and O is indexed by A, we say that strategy π is reflective-oracle
computable (equivalently O-sampled or O-estimable) iff for some oracle pTM T ,
∀a<t ∈ At−1 and e<t ∈ E t−1 and a ∈ A we have π(a|æ<t) = λOT (a|æ<t). We will
abbreviate reflective-oracle computable as “rO-computable” and refer to this class of
strategies as PO

refl.

Enumerability of PO
refl. Note that equivalence holds by Theorem 8 and Theo-

rem 9 because all strategies are assumed to be (chronological, observation contextual,
proper) probability measures, because all Section 4 theorems immediately generalize
to allow input strings over Σ. The class of rO-computable strategies is effectively
enumerable as λ̄OT for T ∈ (T1, T2, ...) an effective enumeration of pTMs. This enu-
meration contains all rO-computable measures because oracle completion leaves prob-
ability measures unchanged. Conversely, all λ̄OT are O-sampled by Theorem 9, which
means they are rO-computable.

6 Reflective-Oracle Computable Nash Equilib-

rium

We want to construct a set of mutually expected reward maximizing strategies
π∗
σ1
, π∗

σ2
, ..., π∗

σn
for σ. It is not obvious that this is possible because the optimal

strategy for each player depends on every other players’ strategy. Explicitly, π∗
σi

depends on σi which depends on each other π∗
σj
, which itself depends on σj, which

depends (circularly) on π∗
σi
. However, given an assignment of strategies to players it

is certainly well-defined to discuss whether each of them is optimal given the others
(i.e. a best response).

Theorem 15 (subjective environment estimable) Given pTM’s generating the
multi-player game σ and oracle pTM’s generating the strategies π1, π2, ..., πn ∈ PO

refl

there is an algorithm that constructs oracle pTM’s estimating σπ, σπ
i , and σi.

Proof. Because σ is sampled by a pTM, it is l.s.c. by Theorem 6. Because it is a l.s.c.
probability measure it is estimable. Because σπ, σπ

i , and σi are defined by uniformly
continuous operations on σ and π1, ..., πn, their conditionals are also O-estimable (by
computably constructable oracle pTM’s).

5It is acceptable for pTM’s to output any symbol in Σ as long as O is indexed by A so that
conditionals are completed to ∆A. Producing the wrong type of output is treated the same as
failing to halt. Later we will explicitly introduce types for symbols, allowing O to be indexed by any
symbol of Σ so that the conditionals for symbols in E are also completed to ∆E .
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By an optimal strategy, we mean one that maximizes the expected sum of a
player’s discounted future rewards. Formally, a discount factor γi ≥ 0 scales the
reward at step i to ensure the sum is finite. We will assume w.l.o.g. that the rewards
are bounded so that

∑∞
i=1 γk < ∞ ensures that

∑∞
i=t γiri always exists. We define

the discount normalization factor Γt =
∑∞

i=t γi, and

Definition 16 (value function) The value function of strategy π interacting with
(subjective) environment ν is

V π
ν (h<t) =

1

Γt

lim
T→∞

∑
æt:T

T∑
i=t

γiri

T∏
j=t

π(aj|h<tæ<j)ν(ej|h<tæ<jaj)

which satisfies the Bellman equation

V π
ν (h<t) =

1

Γt

∑
at,et

π(at|h<t)ν(et|h<tat)(γtrt + V π
ν (h<tæt))

In a multiplayer game σ, player i’s value function in his subjective environment V πi
σi

is in game theoretic terms [KL93b] his expected utility Ui(π).

Definition 17 (optimal strategy π∗
ν) An optimal strategy π∗

ν for environment ν is
a strategy in argmaxπ V

π
ν , which is nonempty by [LH14]. Note that maximizing V π

ν

for different histories h<t is not in conflict, as can be seen from the Bellman equation.
We define V ∗

π = V
π∗
ν

ν (which does not depend on the choice of π∗
ν). Clearly π∗

ν(·|h<t)
must be supported on argmaxa V

∗
ν (h<ta), where V

∗
ν is extended naturally to histories

ending with an action. Because Γt is a positive scale factor, maximizing the value
function is equivalent to maximizing the expected sum of discounted future rewards.

To prove the existence of a rO-computable Nash equilibrium, we need one more
result which is of independent interest.

Theorem 18 (oracle-computable optimal strategy) For any environment ν
whose conditionals are O-estimable, and any estimable discount normalization factor
Γt, there is a rO-computable optimal strategy π∗

ν .

Proof. Note that environments do not produce elements of A so cannot be completed
with O; this means that O-estimability is stronger than O-sampled conditionals (even
though they are probability measures). Later we will introduce typed reflective oracles
and define reflective-oracle computability for environments; adopting such an oracle
closes this gap.

The optimal value function V ∗
ν for ν with discount factor γk and discount normal-

ization factor Γt =
∑∞

i=t γi, is

V ∗
ν (h<tat) =

1

Γt

lim
T→∞

∑
et

max
at+1

∑
et+1

...max
aT

∑
eT

T∑
i=t

γiri

T∏
j=t

ν(ej|h<tæ<jaj) (3)
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We assume that both γt and Γt are estimable. This is true in the most common cases
that γt = γt for a constant rational γ ∈ (0, 1) or γ = 1 until some finite horizon after
which it is 0. Our assumption is stronger than estimability of γt which would only
make Γt l.s.c. but estimability of Γt (for all t) immediately implies estimability of γt.

Now all quantities in the limit of equation (3) are estimable. The limit can be
approximated from below by iteratively increasing T . Recalling that the rewards are
bounded to [0,1], this approximation is also within ΓT+1 of an upper bound because
this is the maximum possible return for the rounds after T . This means that the limit
can be approximated both from above and below hence is estimable. The factor 1/Γt

is also estimable when Γt > 0, but when Γt = 0 the unnormalized value function is
also 0 and we will not need to estimate it (any action is equally good).

It would be natural to guess that since the values for each action are O-estimable,
one can simply compute them to sufficient precision and choose the best. However,
this does not deal with ties between action values. Instead we need to take advantage
of O access again. Noting that the value function is in [0, 1] we can use Theorem 9
to construct a TM Tαβ such that

λOTαβ
(α|æ<t) = 1

2
[V ∗

ν (æ<tα)− V ∗
ν (æ<tβ) + 1] ∈ [0; 1]

λOTαβ
(β|æ<t) = 1− λOTαβ

(α|æ<t) = 1
2
[V ∗

ν (æ<tβ)− V ∗
ν (æ<tα) + 1] ∈ [0; 1]

where α and β are actions. Then in the two action case we define

π(a|æ<t) =


1 if a = α and O(Tαβ,æ<t, 1/2)→ 1,

1 if a = β and O(Tαβ,æ<t, 1/2)→ 0,

0 otherwise.

The procedure described above simply calls O once and chooses an action based on
the response. Recall the notation O(T, x, p)→ 0 or O(T, x, p)→ 1 indicates that an
oracle call with query (T, x, p) yields 0 or 1 (respectively). Since the oracle’s behavior
is stochastic this does not necessarily mean that O(T, x, p) is valued at 0 or 1.

When V ∗
ν (æ<tα) > V ∗

ν (æ<tβ), π takes action α, and when V ∗
ν (æ<tα) < V ∗

ν (æ<tβ),
π takes action β. When the action values are exactly equal, then π randomizes in a
fashion depending on O, but in this case any action choice is equally good. Because
π optimizes the optimal value function it is an optimal strategy.

If the action set is larger than 2, as suggested by [FTC15], we can construct a
version of Tαβ for each pair of actions, then use O to iteratively compare each action
not yet tested against the best so far to find one with the maximum action value.

Theorem 19 (Nash equilibrium) For any multi-player game σ with l.s.c. condi-
tionals, mutually optimal response strategies π∗

1, ..., π
∗
n exist and are reflective-oracle

computable.

Proof. By Theorem 15, there is an algorithm to construct σi from oracle pTM’s for
σ, π1, ..., πn. There is also an algorithm to construct π∗

σi
from σi following the proof
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of Theorem 18. Combining these two algorithms we obtain an algorithm Ti that
constructs π∗

σi
from (Tσ, Tπ1 , ..., Tπn), following once more the convention that Tµ is

an oracle pTM that samples µ. We now have to show that there are πi such that the
constructed optimal responses π∗

σi
w.r.t. environments σπ

i give back πi, i.e. that ∃πi :
π∗
σi
= πi. Define T

′
i to run the oracle pTM returned by Ti(Tσ, T

′
1, ..., T

′
n). This relies on

the second recursion theorem implicitly: Let pTM A accept a two input pTM T and
an input y and construct a new TM Ty(x) = T (x, y). There is a machine T ′(x, i) that
obtains its own description and runs N(x) where N = Ti(Tσ, A(T

′, 1), ..., A(T ′, n)).
Formally T ′

i = A(T ′, i). Every step in the process of running T ′
i has already been

shown to halt, so it samples from the optimal strategy π∗
σi

(meaning that N = Tπ∗
σi
).

Each strategy is optimal given the knowledge of all other players’ strategies. Play-
ers even act optimally on the histories that they play with probability zero, so this is
a subgame perfect Nash equilibrium.

7 Convergence for Bayesian Players

We have shown the existence of a reflective-oracle computable Nash equilibrium,
which concerns the case that all players know each other’s strategies. It is more
interesting to consider Bayesian players that do not know each other’s strategies,
but only have some belief distribution over possible strategies they may face. It is
typically difficult (or impossible) to show convergence for Bayesian players in general
environment classes or games; see for example [LH15]. The main obstacle is that
players may believe exploration is too dangerous. Kalai and Lehrer [KL93a] showed
that in an infinitely repeated game with perfect monitoring Bayesian players can learn
to play an approximate Nash equilibrium, supporting the centrality of Nash equilibria
to game theory6. This is a particularly impressive result because it shows convergence
for purely rational players (without requiring artificial exploration as in e.g. Thompson
sampling) to a randomized strategy, despite the fact that Bayes optimal strategies
can always be made deterministic7. Any solution to the grain of truth problem gets
around this apparent contradiction because the deterministic Bayes optimal strategies
may not appear in P . The catch is that, informally, each player must assign a
small positive probability (a “grain of truth”) to the strategies actually chosen by his
opponents. Well known impossibility theorems ([Nac97; FY01]) have suggested that
this condition is hard or impossible to meet and limited the applicability of Kalai
and Lehrer’s results. Indeed, it took 22 years for the first non-trivial such class to
be found [FST15; FTC15; LTF16]. We will show how reflective oracles can be used
to construct a grain of truth by taking advantage of the effective enumeration of
PO

refl to find a dominant “mixture” strategy ζ. It is then straightforward to construct

6Or depending on one’s perspective, justifying the Bayesian approach to game theory.
7See [FY01] for an explanation of further difficulties
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Bayesian players whose beliefs are consistent with any strategy in the rich class PO
refl

that satisfy the conditions of Kalai and Lehrer’s result. Our novel8 result shows that
Nash equilibria arise very naturally in infinitely repeated stage games, at least insofar
as it is natural to supply players with a common reflective oracle.

Infinitely repeated games of Kalai and Lehrer. Kalai and Lehrer require that
each player imaintains independent belief distributions over the strategy of all players.
Player i’s uncertainty about which strategy in P player j has chosen can be expressed
as mixture of behavior strategies in P , and is itself a behavior strategy by Kuhn’s
theorem [Aum64] (though in general it may not be in P). Therefore we can write
it as πi

j, with superscript representing the player who’s state of knowledge we are
considering and the subscript representing the player he is reasoning about, so that
player i’s full beliefs about the strategies of all players is given by a vector πi =
(πi

1, π
i
2, ..., π

i
n). This also allows us to represent more general beliefs that might not be

constructed as a Bayesian mixture over a strategy class. Every player at least knows
his own strategy so πi

i = πi. The true strategy vector is given by π1:n = (π1, π2, ..., πn)
as in Section 6 (we will sometimes suppress the subscripts 1 : n in π1:n). The lack
of a superscript indicates that this is not subjective. We assume that the reward for
player i is specified by a fixed payoff function ui depending only on the actions of all
players in the current round. Each player knows his own payoff function (since the
action sets are finite, ui is sometimes called a payoff matrix, and for our purposes
may be assumed computable without any significant loss in generality). Though
player i does not know any other player’s payoff function, that information would not
be useful anyway because he does not assume other players’ policies to be optimal.
Perfect monitoring means that each player observes the other players’ actions; there
are no further observations. Therefore σ is a multi-player environment as defined
above but with additional restrictions; in particular there is no longer a meaningful
difference between σπ and σπ

i , because e
i
t = a ̸=i

t = a1t ...a
i−1
t ai+1

t ...ant . This means that
the history distribution σπ contains multiple copies of the same action history as
distributed to each player through σπ

i . It is now the case that a player’s beliefs about
his subjective environment depend on both his index in σ and his beliefs about the
strategies of other players, so that player i models his environment as σπi

i which is
not in general the same as his subjective environment σπ

i .

Conditions for convergence. Kalai and Lehrer’s result requires that πi acts ra-
tionally with respect to player i’s beliefs, or in our terminology that πi = π∗

σπi

i
. This

is not a circular definition because σπi

i does not depend on πi
i (when viewed as an en-

vironment), see Appendix F. Additionally, they require that σπ ≪ σπi
, which follows

from the grain of truth property.

8Though [LTF16] suggests that Kalai and Lehrer’s conditions can be satisfied with reflective
oracles, they do not provide a proof or even explicitly construct the appropriate strategy class PO

refl.
Also, they claim that all players must know the others are Bayesian, which is not required.
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Constructing a mixture policy. We want to satisfy the convergence conditions
of Kalai and Lehrer, but this could be done without learning by setting each player’s
beliefs πi to the true optimal strategies π∗ = (π∗

σ1
, ..., π∗

σn
) as in Section 6; for our pur-

poses the players must also hold (independent) priors distributed over all of PO
refl to

model their ignorance of each opponent’s strategy. We will actually satisfy a slightly
different condition by finding a dominant strategy ζ ∈ PO

refl such that ∀π ∈ PO
refl,

∃c ∈ R+ such that ζ(·) ≥ cπ(·). Our usage of the term “dominant strategy” is not
related to the usual game-theoretic meaning; it is a measure-theoretic property not
an optimality property. A Bayesian mixture

∑
π∈PO

refl
wππ(·) satisfies the latter with

c = wπ > 0. Bayesian mixtures over P are not always in P but we show below that
this holds if

∑
π wπ = 1, so that we could simply define ζ this way and it would be

a probability measure and therefore a strategy (so the following algorithm is unnec-
essary). However, the simplicity based priors often used in algorithmic information
theory [LV+08], including to define Solomonoff induction and AIXI [HQC24] are only
l.s.c. semimeasures. The following construction for ζ encompasses the general case
that the weights may be only l.s.c., which only happens when they are defective
(
∑
wπ < 1) because l.s.c. probability measures are estimable. A player with prior ζ

still learns any opponent’s strategy in PO
refl in the sense of strong merging [KL93a], so

ζ models an unknown strategy, and it can also be used to satisfy Kalai and Lehrer’s
conditions when all players are Bayesian. Fix l.s.c. weights wπ > 0 for each π ∈ PO

refl.
For any pTM T let πT be the strategy corresponding to the measure λ̄OT , and consider
TM Q implementing Algorithm 1.

Algorithm idea. We would like to sample from ζ ′ =
∑

π wππ, but because we want
loose requirements on the computability of wπ we cannot assume they sum to 1. This
means we would like to complete ζ ′. Unfortunately we cannot do this either because
though ζ ′ is O-l.s.c., its conditionals ζ ′(a≤t||e≤t)/ζ

′(a<t||e<t) involve division by an O-
l.s.c. quantity so may not be O-l.s.c. themselves; in particular we do not even know if
ζ ′ is O-sampled9 so we cannot produce an oracle pTM T sampling it and there is no λOT
to complete. Instead, we define a new pTM Q to lower semicompute the numerator of
the conditional, ζ ′(a≤t||e≤t), and use the completed λ̄OQ to estimate the denominator
πQ(a<t||e<t). This makes the fraction ζ ′(a≤t||e≤t)/πQ(a<t||e<t) O-l.s.c., which means
we can sample from it. Then completing λOQ we obtain our measure πQ which may
not literally complete ζ ′, but does dominate it. The core of this construction relies
(again) on Kleene’s second recursion theorem, in this case allowing Q access to its
own description, which it needs to estimate the denominator, intuitively “pretending
that it has already been completed.”10 Note that this is the only recursion within
Q; we estimate λ̄OQ by running the binary search pTM BQ, which makes oracle calls

9When wπ is estimable, the conditionals are estimable and therefore O-sampled; in [FST15] this
is elegantly demonstrated by rejection sampling, though it is obvious in light of our Theorem 9.
Their proof does not extend to l.s.c. wπ.

10This iterative completion is reminiscent of Solomonoff normalization [HQC24, Sec.2.8.2], but
may not preserve the ratios of conditionals.
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about Q but never actually simulates Q.

Algorithm 1 pTM Q
Input: History æ<t

Require: Random sequence ω
Output: at ∼ λOQ(at|æ<t)
1: Obtain ⟨Q⟩
2: Let ϕα(æ<t, ·) approximate

∑
π∈PO

refl
wπ

π(a<t||e<t)
πQ(a<t||e<t)

π(α|æ<t) from below, where

πQ ≡ λ̄OQ
3: Run sample(ϕα, æ<t) with access to ω (Algorithm 7).

Algorithm correctness. Line 1 is possible by Kleene’s second recursion theorem.
Line 1 is doing most of the work; we need to show that the right hand side is O-l.s.c.
Because wπ is assumed l.s.c. and π and πQ are O-estimable by Theorem 8, every term
of the sum is O-l.s.c. This means that the sum is O-l.s.c. (computing the kth partial
sum for ϕα(·, k)). We have to show inductively that the denominator is never 0, but
this is easy because there is a computable measure assigning any finite string nonzero
probability. Therefore ζ ∈ PO

refl.
By the correctness of the sampling algorithm,

λOQ(at|æ<t) =
∑

π∈PO
refl

wπ
π(a<t||e<t)

πQ(a<t||e<t)
π(at|æ<t)

Now we can choose our dominant policy as πQ:

ζ := πQ = λ̄OQ ≥ λOQ

By definition ζ ∈ PO
refl. It only remains to show that ζ dominates the class.

ζ(a≤t||e≤t) = ζ(a<t||e<t)ζ(at|æ<t) ≥ ζ(a<t||e<t)λ
O
Q(at|æ<t)

= ζ(a<t||e<t)
∑

π∈PO
refl

wπ
π(a<t||e<t)

πQ(a<t||e<t)
π(at|æ<t)

=
∑

π∈PO
refl

wππ(a≤t||e≤t) ≥ wππ(a≤t||e≤t) ∀π ∈ PO
refl

noting for the inequality that the O-completed measure for any machine is lower
bounded by its semi-measure. As desired, ζ ∈ PO

refl, and ζ ≥ PO
refl. This observation

is sometimes written as

Theorem 20 (PO
refl contains a dominant element) There exists ζ ∈ PO

refl s.t.
∀π ∈ PO

refl, ∃c > 0 such that ζ(·) ≥ cπ(·) (ζ multiplicatively dominates π). The
first condition is that ζ is in the class and the second that ζ dominates the class
(ζ ≥ PO

refl). Because both are satisfied we say that PO
refl has a dominant element,

written PO
refl ≥ PO

refl.
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When the weights w sum to 1, ζ ∈ PO
refl is a Bayesian mixture over PO

refl, but we
don’t actually need this. We only need the dominance property, and ζ dominates the
defective Bayesian mixture

∑
π∈PO

refl
wππ and consequently any π ∈ PO

refl.

A grain of truth. Choosing πi
j = ζ for i ̸= j, σπi

i is defined as a product over
O-sampled policies ζ (with deterministic computable rewards)11. By Theorem 15,
σπi

i has O-estimable conditionals, and by Theorem 18 there is a reflective-oracle
computable optimal strategy π∗

σπi

i
∈ PO

refl. Therefore, the policy class PO
refl and any

multi-player game with l.s.c. conditionals form a solution to the grain of truth prob-
lem. The setting of Kalai and Lehrer (infinitely repeated games with computable
rewards) is a special case: Because ∀j π∗

σπj

j
≪ ζ , it is easy to see that when

π = (π∗
σπ1

1
, π∗

σπ2

2
, ..., π∗

σπn
n
), and πi = (ζ, ..., π∗

σπi

i
, ..., ζ), σπ ≪ σπi

. Finally, we can
appeal to [KL93a, Thm. 2] to conclude the following:

Theorem 21 (close to ε-Nash equilibrium) In a computable infinitely repeated
game σ, if πi

j = ζ for i ̸= j and πi
i = πi = π∗

σπi

i
(so all players are Bayesian), then

for every ε > 0, σπ-a.s. there is a time tε such that for all t ≥ tε, σ
π plays ε-like the

history distribution of a ε-Nash equilibrium.

The term ε-Nash equilibrium means that every players’ expected utility is within
ε of the best achievable given knowledge of the other players’ strategies. The term
“plays ε-like” is defined in [KL93a, Def. 2], relying on [KL93a, Def. 1] of “ε-close”
measures. It means that with high probability the conditionals of the history distri-
butions are close; Kalai and Lehrer point out this is a kind of Provably Approximately
Correct (PAC) guarantee. Statements holding after time tε refer to measures condi-
tioned on the history up to time tε.

Matching pennies example. In the game of matching pennies there are two
agents (n = 2), and two actions A = {α, β} representing the two sides of a penny. In
each time step agent 1 wins if the two actions are identical and agent 2 wins if the
two actions are different. The payoff matrix is as follows.

α β
α 1,0 0,1
β 0,1 1,0

We use E = {0, 1} to be the set of rewards (observations are vacuous) and define the
multi-agent environment σ to give reward 1 to agent 1 iff a1t = a2t (0 otherwise) and
reward 1 to agent 2 iff a1t ̸= a2t (0 otherwise).

According to our result, when the game is known Bayesian players with prior PO
refl

eventually converge to a Nash equilibrium of the repeated game. When discounting
is geometric with discount factor γ close to 0, this means they will approximately
play the (only) Nash equilibrium of the stage game, randomizing uniformly between
actions α and β.

11It does not depend on πi
i , making its definition a slight abuse of notation.
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Differing action sets. When each player has a different action set, in order to use
a consistent reflective oracle for every player, it is necessary to consider the encodings
of actions. Leike et al.’s (implicit) approach [LTF16] was to choose complete, prefix-
free, binary codes for each type of symbol, which introduces no serious difficulties but
means that their algorithms should properly be specified on the bit level. We would
like to use non-binary reflective oracles to take a more elegant approach. The naive
idea of combining the action sets for each player A =

⊔
1≤i≤nAi does not immedi-

ately work because player i’s strategies must be have their conditionals completed
to probability measures in ∆Ai ̸= ∆A. The solution is slightly harder than using n
separate reflective oracles, because the n reflective oracles would have to consistently
answer queries about each other. Fortunately it is possible to use a typed reflective
oracle as described in Appendix B to map actions from each action set to their own
simplex.

8 Impossibility Results

Why does our solution to Kalai and Lehrer’s grain of truth problem not violate the
impossibility results from the literature? Assume we are playing an infinitely repeated
game where in the stage game no agent has a weakly dominant action and the pure
action maxmin reward is strictly less then the minmax reward. The impossibility
result of [Nac97; Nac05] state that there is no class of policies P such that the
following are simultaneously satisfied.

• Learnability. Each agent learns to predict the other agent’s actions.

• Caution and Symmetry. The set P is closed under simple policy modifications
such as renaming actions.

• Purity. There is an ε > 0 such that for any stochastic policy π ∈ P there is a
deterministic policy π′ ∈ P such that if π′(æ<t) = a, then π(a|æ<t) > ε.

• Consistency. Each agent always has an ε-best response available in P .

In order to converge to an ε-Nash equilibrium, each agent has to have an ε-best
response available to them, so consistency is our target. Learnability is immediately
satisfied for any environment in our class if we have a dominant prior [KL93a]. For PO

refl

caution and symmetry are also satisfied since this set is closed under any computable
modifications to policies. However, our class PO

refl avoids this impossibility result
because it violates the purity condition: Let T1, T2, . . . be an enumeration of T . With
action space A = {0, 1}, consider the policy π that maps history æi

<t to the action
1 − flip(O1(Tt,æ

i
<t, 1/2)). If Tt is deterministic, then π will take a different action

than Tt for any history of length t − 1. Therefore no deterministic reflective-oracle-
computable policy can take an action that π assigns positive probability to in every
time step.
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[FY01] present a condition that makes convergence to a Nash equilibrium impos-
sible: if the player’s rewards are perturbed by a small real number drawn from some
continuous density ν, then for ν-almost all realizations the players do not learn to
predict each other and do not converge to a Nash equilibrium. For example, in a
matching pennies game, rational agents randomize only if the (subjective) values of
both actions are exactly equal. But this happens only with ν-probability zero, since ν
is a density. Thus with ν-probability one the agents do not randomize. If the agents
do not randomize, they either fail to learn to predict each other, or they are not acting
rationally according to their beliefs: otherwise they would seize the opportunity to
exploit the other player’s deterministic action.

But this does not contradict our convergence result: the class PO
refl is countable and

each ν ∈ PO
refl has positive prior probability. Perturbation of rewards with arbitrary

real numbers is not possible. Even more, the argument given by [FY01] cannot work
in our setting: the Bayesian mixture πQ mixes over λT for all probabilistic Turing
machines T . For Turing machines T that sometimes do not halt, the oracle decides
how to complete λT into a measure λ̄OT . Thus the oracle has enough influence on
the exact values in the Bayesian mixture that the values of two actions in matching
pennies can be made exactly equal.

9 Asymptotic Optimality in Unknown Games

We now go further and show convergence to equilibrium even when the game is
unknown and is not-repeated but one infinitely long game, as long as the players use
asymptotically optimal strategies instead of Bayes-optimal strategies.

Definition 22 (asymptotic optimality) A policy π is asymptotically optimal in
mean in environment classM iff ∀µ ∈M, Eπ

µ[V
∗
µ (h<t)− V π

µ (h<t)]→ 0 as t→∞.

In fact, we can show convergence even when the players are not initially aware
of each others’ existence. To do this, we must extend the environment class to all
rO-computable environments (which we define below similarly to PO

refl). Because we
would still like players to be included in the environment we need the oracle to be
usable for computing either strategies or multi-player games. Then the entire arrange-
ment of a multi-player game with the other players embedded is rO-computable. The
situation is similar to differing action sets; it would be possible to simply give environ-
ments access to a reflective oracle that provides completed action probabilities, but
unfortunately this could not be used to complete the action-conditional semimeasures
generated by pTM’s producing perceptions, which ultimately means that the envi-
ronment class would not be effectively enumerable. Instead we use a typed reflective
oracle capable of completing both percept and action distributions. After defining
our environment class, we show that Thompson sampling policies converge to a Nash
equilibrium.
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Definition 23 (MO
refl) Fix alphabet Σ = A

⊔
E . Let O be a typed reflective oracle

with input and output alphabet Σ. Let MO
refl be the set of environments νT = λ̄OT ,

called rO-computable.

Unlike the class of environments or games with estimable conditionals, MO
refl is

effectively enumerable because halting issues are resolved by oracle completion.

Theorem 24 (convergence to equilibrium) Let σ be a reflective-oracle com-
putable multi-agent game and let π1, ..., πn be rO-computable policies that are asymp-
totically optimal in mean in the classMO

refl. Then for all ε > 0 and all i ∈ {1, ..., n}
the σπ1:n-probability that the policy πi is an ε-best response converges to 1 as t→∞.

Proof. This is [LTF16, Thm. 28]. Following the argument of Theorem 15, subjective
environments are inMO

refl. Because each policy is asymptotically optimal in mean in
its subjective environment, Theorem 24 follows from the observation that convergence
in mean implies convergence in probability for bounded random variables. Therefore,

σπ
i [V

∗
σi
(æi

<t)− V πi
σi
(æi

<t) ≥ ε]→ 0 as t→∞

so the probability that πi plays an ε-best response converges to 1 as t→∞.

Thompson sampling. Now we only need to find a set of asymptotically optimal
rO-computable strategies. It is normally assumed that Bayesian agents solve the
exploration/exploitation problem in a principled way, so it is somewhat surprising
that they are not (even weakly) asymptotically optimal in too general environment
classes [Ors10]. Thompson sampling [Tho33; Lei+16] is an asymptotically optimal
variation of the Bayesian rational strategy modified to increase exploration. Let the
effective horizon Ht(ε) be the minimum number of steps in the future such that
the discount normalization factor is less than a ε fraction of the current discount
normalization factor; in the case ε = 1/2 this is the “half-life” of Γt. Formally
Ht(ε) = mink{k|Γt+k/Γt ≤ ε}. Then Thompson sampling is described by Algorithm 2
and denoted by πTS. Naturally it is parameterized by a class of environments and
a p(oste)rior weight function w. We will chooseMO

refl for the class of environments,
which means players initially are not even aware that their opponents exist (or of their
number). Then the first condition of the strong grain of truth property is satisfied:

Theorem 25 (Strong grain of truth property, first condition) If σ is an O-
estimable game and π ̸=i ∈ (PO

refl)
n−1 then σπ

i ∈MO
refl.

Proof. This follows from a slight generalization of Theorem 15 to include O-estimable
games.

If more prior knowledge is required we can instead enumerate G × Pn−1. Note
that even in this case w is a joint p(oste)rior overM = G ×Pn−1, i.e. can model any
collusion between players (and even the game itself).
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If we only assume that the weights are lower semicomputable semimeasures,
there is a chance that sampling from them fails. This means that the infinite
loop may get stuck after finitely many iterations. It seems that Thompson
sampling is not rO-computable (because it is not a contextual probability mea-
sure) without stronger assumptions on w, for instance O-estimability. We can
rephrase the Thompson sampling algorithm as shown in Algorithm 3 to ex-
plicitly show how to sample actions on each step (reflective-oracle computably)
without persistent memory instead of abstractly describing the behavior be-
tween resampling environments. Equivalence is similar to Kuhn’s theorem [Aum64].

Algorithm 2 Thompson sam-
pling strategy πTS
Input: Percept stream e1:∞
Output: a1:∞ ∼ πTS(·||e1:∞)
1: while true do
2: sample ρ ∼ w(·|æ<t)
3: follow π∗

ρ for Ht(εt)
steps

Algorithm 3 Stepwise Thompson sampling strat-
egy πTS
Input: History æ<t

Output: πTS(at|æ<t) ∀at ∈ A
1: t0 ← 0; i← 0
2: while ti ≤ t do { ti+1 ← ti+Hti(εti); i← i+1
}

3: t′ ← ti−1

4: πTS(at|æ<t) :=∑
ρ∈MO

refl

w(ρ|æ<t′)
π∗
ρ(æt′:t|æ<t′)

πTS(æt′:t|æ<t′)
π∗
ρ(at|æ<t)

It still remains to show that Algorithm 3 is rO-computable. By definition,

w(ρ|æ<t) = w(ρ)
ρ(æ<t)

ξ(æ<t)
where ξ(æ<t) :=

∑
ρ∈MO

refl

w(ρ)ρ(æ<t)

When w is O-estimable, also every factor above (assuming that the environment
class is general enough that all finite history prefixes are possible) and therefore the
posterior weights are O-estimable. For any ρ ∈ MO

refl, Theorem 18 shows that the
optimal policies π∗

ρ are all O-estimable. This makes Line 4 of Algorithm 3 possible
with O access.

Theorem 26 (Thompson sampling computability) For estimable Γt and nor-
malized estimable prior w over overMO

refl, πTS overMO
refl is rO-computable.

Together, Theorem 25 and Theorem 26 show that PO
refl and the class of O-estimable

games satisfy the Thompson sampling version of the strong grain of truth property.
Technically, computing the horizon Ht(ϵt) exactly would require finitely com-

putable Γt and ϵt, but the convergence of Thompson sampling only depends on ϵt > 0
and ϵt → 0. As long as Γt+k/Γt is computed to sufficient precision to ensure the ratio
between resampling steps decreases to 0 this is equivalent to Thompson sampling
with an acceptable choice of ϵt.
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(Un)normalized weights w. Recall that all normalized l.s.c. w are also es-
timable. Given that we generally assume in this paper that the weights are at
least l.s.c., Theorem 26 only relies on the weights summing to one; without this
requirement, Thompson sampling would sometimes fail to sample an environment
and its behavior is under-specified! Generalizing to l.s.c. weights, it is natural to try
to use the reflective oracle to somehow complete Thompson sampling. We could try
to complete πTS’s environment mixture ξ. Unfortunately this would not explicitly
complete the weights which Thompson sampling needs access to; πTS requires not a
dominant environment but explicit coefficients. The reflective oracle could be used
to directly complete each weight from an oracle pTM generating it (in the sense
of outputting 1 with probability w(ρ|æ<t) and otherwise failing to halt) but it is
unclear whether the individually completed weights would still sum to 1.12

Combined with Theorem 26, Theorem 11 tells us that we can choose O to make
Thompson sampling limit-computable, which lets us improve Theorem 24.

Theorem 27 (limit-computable convergence to equilibrium [LTF16,
Cor.20]) There are limit-computable strategies π1, ..., πn such that for any com-
putable multi-agent game σ and for all ε > 0 and all i ∈ {1, ..., n} the σπ1:n-probability
that the policy πi is an ε-best response converges to 1 as t→∞.

Since all πi converge to ε-best responses, this implies that π1:n is asymptotically
ε-Nash. We can say more about the computability level ofMO

refl:

Theorem 28 (∆1 ⊂ MO
refl ⊂ ∆2) The class MO

refl contains all (joint) estimable
(normalized) environments (sometimes calledMmsr

est ) and is contained in the class of
measures with limit-computable conditionals.

Proof. The claimMmsr
est ⊂ MO

refl follows immediately from Lemma 10, and is in fact
strict by a simple diagonalization argument in [LTF16]. The claim thatMO

refl ⊂ ∆2

follows from Theorem 11. It is easy to see that ∆1 ⊂ PO
refl ⊂ ∆2 also holds by the

same argument.

10 An Application to Self-Prediction

In Section 9 we derived a convergence result for players who are not initially aware of
the multi-player game they are playing, or even that other players are involved. We
can take this ignorance even further by allowing our player to be uncertain of even his
own strategy as he selects each individual move. This is the setting of the Self-AIXI
agent proposed by [Cat+23]. Though the problem may appear esoteric at first, it is
of interest to reinforcement learning (RL) researchers. Model-based RL algorithms

12Really, what we would like to do is divide ξ by
∑

ρ w(ρ) to normalize directly, but this is not
even l.s.c.

27



often execute an expensive decision tree search to plan their future actions. This
search can be narrowed by (iteratively) distilling the resulting policy into a model
that guides action selection. The Self-AIXI agent can be viewed as an extreme case
of this approach, entirely replacing planning with an interaction between self-model
and environment-model akin to model- and value-based policy search methods but
more general and principled. Arguably, the Self-AIXI framework also describes human
planning; though we may make plans for our future actions, we do not know which
strategy we will ultimately follow. Formally, a Self-AIXI policy is defined13 as

Definition 29 (Self-AIXI) Let ζ and ξ be dominant elements of policy class P and
environment classM.

πS(h<t) ∈ argmaxat∈A V
ζ
ξ (h<tat)

V ζ
ξ (h<tat) :=

1

Γt

lim
m→∞

∑
at+1:m,et:m

m∑
i=t

γiri

m∏
j=t

ξ(ej|æ<jaj)
m∏

j=t+1

ζ(aj|æ<j)

The results of [Cat+23] suggest convergence of Self-AIXI to π∗
ξ (when ξ is a dom-

inant element of the class Msemi
lsc of environments given by contextual chronological

l.s.c. semimeasures, π∗
ξ is called AIXI), but there are gaps remaining14. One problem

is that they rely on πS ∈ P without constructing any policy class (interesting or
otherwise) with this property. Reflective oracles provide a natural example.

Theorem 30 (Self-AIXI in computable environment) Let O be a reflective or-
acle with input alphabet Σ = A

⊔
E and output alphabet A. Let P = PO

refl andM be
any environment class containing a dominant element ξ with estimable conditionals.
Then there exists a dominant ζ ∈ PO

refl, and there is a stochastic πS ∈ PO
refl for ζ, ξ.

Proof. The existence of such a ζ follows from Theorem 20. The argument that
πS ∈ PO

refl follows Theorem 18; the conditionals of ξ are assumed estimable and
the conditionals of ζ are O-estimable.

Note that since we do not have an effective enumeration of the class of environ-
ments with estimable conditionals, we cannot choose it asM in Theorem 30, making
the result somewhat less interesting. We can solve this problem by sharing the reflec-
tive oracle between the strategies and the environments as in Section 9:

13We require strategies and environments to be (contextual, chronological) probability measures.
This definition generalizes from explicit Bayesian mixtures to any dominant elements of each class.
Also, our Definition 29 does not maximize equation (3) of [Cat+23], which asserts linearity of the
action value function Qζ

ξ with the incorrect coefficients (failing to update on the latest action) and is
probably not the intended definition as it is inconsistent with the rest of the paper. This definition of
Qζ

ξ would make Self-AIXI a kind of one-step causal decision theorist instead of an evidential decision
theorist.

14We do not address their requirement that πS is “reasonable off-policy” which is a technical
and slightly unnatural condition that has not been shown for any combination of strategy and
environment classes.
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Theorem 31 (Self-AIXI in oracle computable environment) Fix some finite
alphabet Σ and encodings over Σ for each element of A and E . Let O be a typed
reflective oracle with input and output alphabet Σ. Let ζ and ξ be dominant elements
of PO

refl andMO
refl. respectively. Then there is a stochastic πS ∈ PO

refl for ζ, ξ.

Proof. In this case the conditionals of ξ are O-estimable because it is in MO
refl, and

as before the argument follows Theorem 18.

11 Conclusion

We have constructed a policy class meeting the requirements of [KL93a]. This can be
seen as a justifying the importance of Nash equilibria from a Bayesian perspective.
When a Bayesian player’s strategy is private information, we see no convincing rea-
son for him to play a strategy corresponding to any Nash equilibrium.For instance, a
Bayesian who has observed that his opponent in a game of “rock, paper, scissors” usu-
ally chooses “rock” (in past otherwise similar games) might naturally choose “paper,”
instead of randomizing uniformly as anticipated by classical game theory. However,
when the game and policy classes satisfy the grain of truth property, players eventu-
ally converge to a set of strategies close to a ε-Nash equilibrium.

Reflective oracles in the real world. It is interesting to consider whether the
grain of truth property is a reasonable assumption about the beliefs and strategies
of humans. The limit-computability of (some) reflective oracles makes this at least
distantly plausible. Certainly humans should model others as demonstrating roughly
comparable computational power to ourselves, and our computational boundedness
means any mutual recursion must eventually terminate. Reflective oracles are one
possible model of this termination, but it is hard to see how the (critical) assumption
that all players use the same reflective oracle can be justified. At least in the self-
predictive case it is sensible for an agent to use the same reflective oracle to model
their beliefs about themselves and their environment; convergence results should still
hold when the true environment does not actually use oracle access, as long as it
is in MO

refl. More speculatively, perhaps a shared reflective oracle is a reasonable
assumption for (semi-)cooperative multi-agent systems such as members of a common
culture or subagents within a cognitive architecture.

Future work. It would be interesting to determine the degree of centrality and
uniqueness of reflective oracles (and the corresponding PO

refl) among the solutions to
the grain of truth problem, and to study in general the connection between the grain
of truth problem and self-prediction. Another fascinating research direction is to
clarify the computability properties of reflective oracles; we know that there exist
limit-computable reflective oracles, but not all reflective oracles are limit-computable
because any measure is computable with respect to some reflective oracle (see Ap-
pendix B). Therefore, it is easy to understand

⋃
O PO

refl. We showed in Lemma 10 that
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regardless of the chosen reflective oracle O, all estimable measures ν15 are sampled
by some probabilistic Turing machine with access to O (by binary search), but are
any other measures in the intersection

⋂
O PO

refl?
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Our notation follow [LTF16] as closely as possible.

[[R]] = 1 if R=true and =0 if R=false (Iverson bracket)

:= defined to be equal

N the natural numbers

Q the rational numbers

R the real numbers
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t (current) interaction (time) step, t ∈ N
i player=agent index ∈ {1, ..., n}
j the other players=agents ̸= i part of the environment

k natural number indices

n number of agents=players

p, q a real value with interpretation as a probability.

X ∗ the set of all finite strings over the alphabet X
X∞ the set of all infinite sequences over the alphabet X
∆X a probability distribution over X
O a reflective oracle

Õ a partial oracle

flip the function that on input p ∈ [0, 1] returns 1 with probability p, else 0.

Qi a query to an oracle in an enumeration i ∈ N
T the set of oracle probabilistic Turing machines, extended to include tape contents

T an oracle probabilistic Turing machine

λT the semimeasure corresponding to the probabilistic Turing machine T

λOT the semimeasure corresponding to the probabilistic Turing machine T
with access to the reflective oracle O

λ̄OT the oracle-completed semimeasure corresponding to the probabilistic Turing machine T
with access to the reflective oracle O

rO abbreviation for “reflective oracle”

O-sampled a semimeasures ν is O-sampled if there exists a pTM T such that ν = λOT
O-estimableestimable with access to the reflective oracle O

ν a semimeasure sometimes representing an environment

µ the true environment

µ≪ ν µ is absolutely continuous w.r.t. ν

A a finite alphabet often identified with the set of possible actions

E a finite alphabet containing the possible percepts; rewards should be
computable from percepts

α, β alphabet symbols usually in A
at the action(s) in time step t

et the percept(s) in time step t

æ<t the first t− 1 interactions, a1e1...at−1et−1

ϵ the empty string

ε a small positive real number

γ the discount function γ : N→ R≥0
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Γt a discount normalization factor Γt =
∑∞

k=t γk

ν, µ environments/semimeasures

σ a multi-player game

σπ1:n history distribution induced by π1, ..., πn interacting in the multi-player game σ

σi the subjective environment of player i in multi-player game σ

π a policy (strategy), π : (A× E)∗ → A
V π
ν the ν-expected value of policy π

V ∗
ν the optimal value in environment ν

G a countable class of multi-player games

M a countable class of environments

MO
refl the class of environments computed by probabilistic Turing machines

with access to reflective oracle O

P a countable class of policies (strategies)

PO
refl the class of policies (strategies) computed by probabilistic Turing machines

with access to reflective oracle O

w a real valued weight distribution, usually overMO
refl or PO

refl

ξ a mixture environment, usually overMO
refl

ζ a mixture policy over PO
refl

B Non-binary Alphabet Reflective Oracles

We provide a detailed existence proof for non-binary reflective oracles. First, we ex-
tend the definition of reflective oracles to the non-binary case, which requires slightly
stronger conditions than the binary case to ensure that the oracle completed condi-
tionals lie on a probability simplex. Then we construct a point-to-set mapping that
expresses an oracle’s self-consistency and show that a fixed point would imply the
existence of a reflective oracle. Finally, we demonstrate the existence of a fixed point
using the infinite dimensional version of the Kakutani fixed point theorem [Fan52].

Definition. The most important feature of a reflective oracle is that it can be used
to complete a semi-measure to a measure (which is then reflective-oracle sampled and
even estimable). Extending the definition to non-binary alphabets, we must take care
to preserve this property. It is easiest to do this by extending the strict definition of
Fallenstein et. al. [FTC15], which we refer to as a “step reflective oracle.” Slightly
generalizing their notation to explicitly include the input x ∈ {0, 1}∗, they require
that for every machine T and input x, there is some cutoff P [T (x) = 1] ≤ q ≤
1− P [T (x) ̸= 1] such that

p < q ⇒ O(T, x, p) = 1
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p > q ⇒ O(T, x, p) = 0

We will generalize to finite output alphabetA and input alphabet Σ. For our purposes
A ⊂ Σ; for instance A is a set of actions and Σ includes actions and observations.

Definition 32 (reflective oracle) The oracle O valued in [0,1] is reflective iff for
each probabilistic TM T and string x ∈ Σ∗, ∃{qα}α∈A satisfying the following prop-
erties: ∑

α∈A

qα = 1

And for all α ∈ A,

P [TO(x) = α] ≤ qα ≤ 1− P [TO(x) ̸= α]

p < qα ⇒ Oα(T, x, p) = 1

p > qα ⇒ Oα(T, x, p) = 0

Notice that oracles are now indexed by α, so can be thought of as a family satis-
fying certain relations or as accepting a new argument of type A. An oracle responds
to queries with 0 or 1, and the value of Oα on a given query is interpreted as the
probability that its answer is 1. Given this definition, it is not difficult to see how to
conduct a binary search for each qα and recover a measure.

Proof. Now we must prove that non-binary reflective oracles actually exist. The
argument follows the original existence proof. The key is to restrict certain functions
to lie on the simplex (which is closed, compact, and convex) which makes it possible
to ensure that the point-set map only accepts and produces functions satisfying the
first condition.

The argument relies on the infinite dimensional version of the Kakutani fixed
point theorem (sometimes more appropriately but less helpfully referred to as the
Kakutani-Ky Fan theorem), which I’ll reproduce from Ky Fan’s paper [Fan52]:

Theorem 33 (infinite dimensional Kakutani fixed point theorem) Let L be
a locally convex topological linear space and K a compact convex set in L. Let R(K)
be the family of all closed convex (non-empty) subsets of K. Then for any upper
semicontinous point-to-set transformation f from K into R(K), there exists a point
x0 ∈ K s.t. x0 ∈ f(x0).

The more modern term for locally convex topogological linear space is locally
convex topological vector space (LCTVS).

Let T be the space of pTM’s generalized to include the tape configuration. We
will consider points

(query, eval)

where eval ∈ (∆A)T , which we interpret as (for a fixed point) returning the completed
chance of a given pTM outputting α, and query ∈ [0, 1]T ×(Q∩[0,1])×A which is a function
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on queries returning the oracle’s chance of producing a 1. We will later introduce
constraints on query in terms of eval (through the point-to-set map f) so that a fixed
point is a reflective oracle, which is why the definition of the space for query does
not need to enforce that the oracle’s answers describe a probability distribution. The
space of (query, eval) pairs is

K = [0, 1]T ×(Q∩[0,1])×A × (∆A)T

This is a subset (under a trivial “currying” homeomorphism on the space of eval) of

S = RT ×(Q∩[0,1])×A × R(T ×A)

which is an LCTVS under the product topology. This follow from the fact that R
is a (very simple) LCTVS, and all LCTVS properties are closed under the product
operation.

Topological properties. We will later need that S is metrizable to use a notion
of sequential convergence instead of “upper semicontinuity”. Because R is Hausdorff
and products of Hausdorff spaces are also Hausdorff, S is a LCTVS in the stricter
sense of Rudin’s Functional Analysis [Rud91] (which requires T1, a property weaker
than Hausdorff). Theorem 9 tells us that TVS is metrizable if it has a countable local
base. Our countable local base for S is a sequence of balls with radius 1/n at the first
n points in enumerations of both the exponents (T × A and T × (Q ∩ [0, 1]) × A),
with R at the (infinitely many) remaining points. So S is metrizable. Now we need
to know that K is compact and convex. Tychonoff’s theorem implies it is compact.
Convexity is immediate from convexity of simplices.

The point-to-set map f . The original proof demonstrates that it is possible to
construct an oracle reflective on some subset of queries and equal to a different fixed
oracle elsewhere. This is more than we need and clutters the proof, but is easy to
understand once the proof is digested, so we focus on the case that we want a reflective
oracle on all queries. We are ready to define our point-to-set map f : K → 2K . We
will then demonstrate that the range of f is R(K). Let (query, eval) ∈ f((query, eval))
iff the following conditions hold:

p < evalα(T )⇒ query′α(T, p) = 1

p > evalα(T )⇒ query′α(T, p) = 0

This leaves query′α(T, evalα(T )) unconstrained.
The recursive rules on eval′ are slightly more complicated. The “base case” is that

if T returns T () = β on its next computation step,

eval′α(T ) = δα(T ()) = [[α = β]]

T can halt returning nothing or something other than a single symbol. In that case,
eval′α(T ) is arbitrary.
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The other “inductive” rules are copied from [FTC15]. If T performs a deterministic
computation step producing a new machine/configuration N , eval′α(T ) = eval(N). If
T performs a coin flip yielding a state N with rational probability p and N ′ with
rational probability 1 − p, eval′α(T ) = p evalα(N) + (1 − p) evalα(N

′). We observe
that typically a transition of a pTM is defined to use exactly one random bit so we
should have p = 1

2
. Also, if T has a chance of halting with some output immediately

after reading the random bit (in the same computation step), evalα(N) or evalα(N
′)

should be replaced according to the first rule; otherwise they are not really well-
defined. Calls to the oracle should be treated the same as coin flips with probability
determined by query: if the oracle is invoked on (T, p) yielding N on 1 and N ′ on 0,
and query(T, p) = q then eval′α(T ) = q evalα(N) + (1− q) evalα(N ′).

Assuming for a moment that a fixed point exists, we will show that this gives us
a reflective oracle, defined by P [Oα(T, p) = 1] = queryα(T, p). We normally want our
reflective oracles to accept a machine description and input string, but these can be
combined into an extended machine/configuration as in the definition of O.

By induction on the number of computation steps,

P [TO() = α] ≤ evalα(T ) ≤ 1− P [TO() ̸= α]

Together with the conditions of queryα(T, p), this shows that evalα(T ) satisfies the last
three conditions on qα in Appendix B. The first condition is automatically satisfied
because eval(T ) is restricted to the simplex; this pushes the burden of proof to the
non-emptiness of f((query, eval)). Therefore, O is a reflective oracle.

Existence of a fixed point. Now we only need to prove the existence of a fixed
point by establishing the conditions of the infinite dimensional version of the Kakutani
fixed-point theorem. First, we will show that f((query, eval)) is closed, convex, and
non-empty. In a metrizable space, closed sets can be characterized in the ordinary
way by sequential convergence. Note that at every point, query′ and eval′ are either
restricted to some fixed value depending on (query, eval) or are unrestricted (except
for eval′ to lie on the simplex, which is closed). Taking limits (of any such sequence)
shows that f((query, eval)) is closed. Convexity is also easy to verify pointwise (and
from convexity of the simplex). Finally, we must show non-emptiness. It is obvious
that the conditions on query′ can always be satisfied. It remains only to show that
the conditions on eval′ can be satisfied by points lying on the simplex. But this is
only another application of convexity of the simplex, noting that q and p lie in [0,1],
and eval(T ) ∈ ∆A, and verifying that the “base case” condition produces a point on
the simplex (in fact an extreme point of the simplex).

The last property to verify is “upper semicontinuity.” But as Fan points out, this
is equivalent to the definition in terms of convergent sequences, which is usually called
the “closed graph property.” We must show that if (query′n, eval

′
n)→ (query′, eval′),

(queryn, evaln) → (query, eval), and (query′n, eval
′
n) ∈ f((queryn, evaln)), then

(query′, eval′) ∈ f((query, eval)).
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The argument is exactly the same as in the binary case, but applies “pointwise”
to each α. Taking limits on both sides of the rules for eval′ immediately gives the
desired result for this part. For query′α(T, p), the argument depends on the rela-
tionship between evalα(T ) and p. If they are equal, the condition is automatically
satisfied. The two remaining cases are symmetric, so we consider (w.l.o.g.) the case
that evalα(T ) > p. Since evaln → eval (in the topology of pointwise convergence),
(evaln)α(T ) → evalα(T ), and for sufficiently large n, (evaln)α(T ) > p. This means
that (query′n)α(T, p) → 1, so query′α(T, p) = 1. This proves the closed graph prop-
erty, which implies a fixed point of f by the infinite dimensional Kakutani fixed point
theorem. Therefore, there is a non-binary alphabet reflective oracle.

Types for symbols. Sometimes the alphabetA =
⊔

1≤i≤nAi and each machine has
an intended type in {1, .., n}. Then we want to interpret our machines as semimea-
sures over the corresponding A∗

i and complete the conditionals to ∆Ai. The primary
examples are when each player has a different action set (so n is the number of play-
ers) and when a player interacts with an environment (so n = 2 for the action and
percept spaces). The natural idea is to use a different reflective oracle with each
output alphabet Ai, but unfortunately the oracles need to be answer questions about
each other’s behavior so this does not literally work. Instead we can change the re-
quirement

∑
α∈A qα = 1 to the n requirements

∑
α∈Ai

qα = 1, and force the oracle

to satisfy this by changing the space of eval from (∆A)T to (
∏n

i=1 ∆Ai)
T . It is easy

to see that this set is still closed, convex, and compact. The rest of the existence
proof goes through essentially unchanged. The resulting (typed) non-binary oracle
automatically knows which output type we expect for a machine based on the type of
its symbol argument α ∈ Ai and completes the associated semimeasure appropriately,
redistributing the probability of outputs outside of Ai in the same way as non-halting
probability mass.

Reflectivity on subsets. It is easy to modify the proof above so that we construct
an oracle O that satisfies reflectivity on some subset of queries R but behaves iden-
tically to any arbitrary oracle O′ outside of R. Let A be a closed set of pTM’s that
only make oracle calls about other pTM’s in A. Let R = {(T, x, p)|T /∈ A}. Then if
O′ is reflective on queries about pTM’s in A (that is, RC), we can construct an oracle
O reflective on R that agrees with O′ on RC . But because replacing O′ by O does
not change the results of any oracle calls for machines in A, O is also reflective on
RC , which means O is a reflective oracle (on all queries). This is analogous to the
extending a linearly indepedent set of vectors to a basis. In some cases it is easy to
find a variety of explicit oracles O′ reflective on A; for instance, if A = {T} where
T never halts, O′ can complete λOT to a measure in any arbitrary way, and there will
exist a reflective oracle O agreeing with O′ about T . This means that all measures
are reflective-oracle computable with appropriate choice of O (though by countability
of T there is no particular O that makes every measure rO-computable).
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C Limit-Computable Step Reflective Oracles

We will extend Leike’s proof that there is a limit-computable reflective oracle [LTF16]
to show that there is a limit-computable non-binary reflective oracle. This requires
a slightly different construction which yields a limit-computable step reflective ora-
cle when restricted to the binary case, simplifying the oracle completion process by
removing the need for an expectation.

Following [LTF16], we will construct an infinite sequence of partial oracles con-
verging to a reflective oracle in the limit. The set of queries to a reflective oracle is
countable and computably enumerable, so we will fix a computable enumeration:

T × Σ∗ ×Q =: {Q1,Q2, ...}

where T is the set of (generalized) pTM’s as above and Σ is the input alphabet.
A reflective oracle is also indexable by symbols from the output alphabet.

Definition 34 (k-partial oracle) A k-partial oracle Õα is a function from the first
k queries to the multiples of 2−k in [0,1]:

Õα : {Q1,Q2, ...,Qk} → {n2−k|0 ≤ n ≤ 2k}

Definition 35 (approximate an oracle) A k-partial oracle Õ approximates an
oracle O iff ∀α|Oα(Qi)− Õα(Qi)| ≤ 2−k−1 for all i ≤ k.

Let Õ be a k-partial oracle for k ∈ N and let T ∈ T be an oracle machine. We
define T Õ to be the following machine:

1. Run T for at most k steps.

2. If T makes an oracle α call on Qi for i ≤ k,

(a) Return 1 with probability Õα(Qi)− 2−k

(b) Return 0 with probability 1− Õα(Qi)− 2−k

(c) halt otherwise

3. If T calls the oracle on Qj for j > k, halt.

Since Õ is not a fully defined oracle, this is different than the usual meaning of
TO. In particular it implicitly depends on the value of k.

Lemma 36 (bound on λÕ
T ) If a k-partial oracle Õ approximates a reflective oracle

O, then λOT (α|x) ≥ λÕT (α|x) for all α ∈ A, x ∈ Σ∗, and T ∈ T .

Proof. This follows from the definition of T Õ: when running T with Õ instead of
O, every sequence of oracle responses is less likely because Õα − 2−k < Oα(Qi) and
1− Õα− 2−k < 1−O(Qi). The other differences can also only lose probability mass.
If T makes calls whose index is > k or runs for more than k steps the machine halts
and no output is generated.
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Definition 37 (k-partially reflective) A k-partial oracle Õ is k-partially (step)
reflective iff for the first k queries (T, x, p) and for all α

1. p < λÕT (α|x) implies Õα(T, x, p) = 1, and

2. p > 1−
∑

β ̸=α λ
Õ
T (β|x) implies Õα(T, x, p) = 0.

Also, we require that for all α, T, x, Õα(T, x, ·) is non-increasing and there is at most
one p such that (T, x, p) is in the first k queries and Õα(T, x, p) /∈ {0, 1}.

Finally, for each T, x appearing in one of the first k queries,

1.
∑

α∈A min{p|(T, x, p) ∈ {Qi}i≤k and Õα(T, x, p) = 0} ≥ 1

2.
∑

α∈A max{p|(T, x, p) ∈ {Qi}i≤k and Õα(T, x, p) = 1} ≤ 1

The minima default to 1 and the maxima default to 0. The first pair of conditions
enforce the reflective oracle property. The remaining conditions enforce the step
reflective oracle property which is always required for non-binary reflective oracles.

We can check whether a k-partial oracle is k-partially reflective in finite time.
The first pair of conditions can be checked by running the machines from the first k
queries for k steps each (on every combination of the ≤ 2k random bits used) and

calculating λÕT (α|x) exactly. The rest are clearly possible to verify with one pass over
the first k queries for each α.

Lemma 38 (partial approximations are partially reflective) If O is a reflective
oracle and Õ is a k-partial oracle that approximates O, then Õ is k-partially reflective.

Proof. Note that since Õ assigns values in a 2−k grid and approximates O up to
2−k−1, for the first k queries Oα(T, x, p) = 0 → Õα(T, x, p) = 0 and Oα(T, x, p) =

1→ Õα(T, x, p) = 1. Assuming λÕT (α|x) > p we get from Lemma 36 that λOT (α|x) ≥
λÕT (α|x) ≥ p so 1 = Oα(T, x, p) = Õα(T, x, p). The second condition is proved
symmetrically. For the remaining conditions, recall that for each T, x, ∃qα with
O(T, x, p) = 1 for p < qα, O(T, x, p) = 0 for p > qα, and

∑
α qα = 1. This means

that Õα(T, x, p) = 1 for p < qα and Õα(T, x, p) = 0 for p > qα, and since these are
the maximum and minimum values of Õ it is certainly non-increasing regardless of
its value at qα (which is in general not defined). Additionally, if Õα(T, x, p) = 0 then
certainly p ≥ qα, which implies that the sum of minima is ≥

∑
α qα = 1 (this is also

automatically satisfied if any Õα(T, x, ·) does not take the value 0). The argument
for the bound on the maxima is similar.

Definition 39 (extending partial oracles) A k + 1 partial oracle Õ′ extends a
k-partial oracle Õ iff |Õα(Qi)− Õ′

α(Qi)| ≤ 2−k−1 for all i ≤ k.

Lemma 40 (infinite sequence of extensions) There is an infinite sequence of
partial oracles (Õk)k∈N such that for each k, Õk is a k-partially reflective k-partial
oracle and Õk+1 extends Õk.
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Proof. As shown in Appendix B, there is a (step) reflective oracle O for any finite
alphabet. For every k, there is a canonical k-partial oracle Õk that approximates
O: restrict O to the first k queries and for any such query Q for each α ∈ A pick the
value in the 2−k grid which is closest to Oα(Q). By construction, each Õk+1 extends
Õk and by Lemma 38, each Õk is k-partially reflective.

Lemma 41 (λÕk

T increases) If the k + 1 partial oracle Õk+1 extends the k-partial

oracle Õk, then ∀α λÕ
k+1

T (α|x) ≥ λÕ
k

T (α|x) for each T ∈ T and x ∈ A∗

Proof. T Õk+1
runs for one more step than T Õk

and can answer one more query. Be-
cause Õk+1 extends Õk, |Õk+1

α (Qi) − Õk
α(Qi)| ≤ 2−k−1, which means Õk+1

α (Qi) −
2−k−1 ≥ Õk

α(Qi) − 2−k, so halting on oracle calls is less likely and the chances of
returning 0 or 1 are both higher.

Search algorithm. Now we are prepared to state the algorithm that constructs a
reflective oracle in the limit. The algorithm recursively traverses a directed acyclic
graph (DAG) of partial oracles. The DAG’s nodes are the partial oracles; level k
of the DAG contains all k-partial oracles. There is an edge in the DAG from the
k-partial oracle Õk to the i-partial oracle Õi if and only if i = k + 1 and Õi extends
Õk.

For every k, there are only finitely many k-partial oracles, since they are functions
from finite sets to finite sets. In particular, there are exactly two 1-partial oracles (so
the DAG has two sources, nodes without parents where the search can begin). Pick
one of them to start with, and proceed recursively as follows. Given a k-partial oracle
Õk, there are finitely many (k+1)-partial oracles that extend Õk (finite out-degree).
Pick one that is (k + 1)-partially reflective (which can be checked in finite time). If
there is no (k + 1)-partially reflective extension, backtrack.

By Lemma 40 our DAG is infinitely deep and thus the search does not terminate.
Moreover, it can backtrack to each level only a finite number of times because there
are only a finite number of paths from a source to each level and at each level there
are only a finite number of possible extensions (in fact, though it is possible for
two different paths from sources in the DAG to reach the same node, there is no
need to return to any node once it has been visited and all of its children have
been explored). Therefore, the algorithm will produce an infinite sequence of partial
oracles, each extending the previous. Because of finite backtracking, the output
eventually stabilizes on a sequence of partial oracles Õ1, Õ2, .... By the following
lemma, this sequence converges to a reflective oracle, proving Theorem 43.

Lemma 42 (limit is reflective) Let Õ1, Õ2, ... be a sequence where Õk is a k-
partially reflective oracle and Õk+1 extends Õk for all k ∈ N. Let O := limk→∞ Õk be
the pointwise limit. Then

1. λÕ
k

T (α|x)→ λOT (α|x) as k →∞ for all α ∈ A and x ∈ Σ∗.

2. O is a reflective oracle.
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Proof. First note that the pointwise limit must exist because |Õk
α(Qi)− Õk+1

α (Qi)| ≤
2−k−1 by Definition 39.

1. Since Õk+1 extends Õk, each Õk approximates O. Let α ∈ A, T ∈ T , and
x ∈ Σ∗ and consider the sequence ak := λÕ

k

T (α|x). By Lemma 41, ak ≤ ak+1 so
the sequence is monotonically increasing. It is also bounded above by λOT (α|x)
according to Lemma 36, so it converges. It only remains to show that the
sequence does not converge to something less than λOT (α|x). The probability
that TO halts, which is bounded above by 1, is the sum of its probabilities of
halting at each step. Therefore, the probability TO halts after running for more
than k steps is a tail sum that approaches 0 as k →∞. The distributions on the
results of calls to the partial oracles converge to the distribution on the results
of calls to O by definition of O and because 2−k → 0 in the definition of T Õk

.
The definition of TO therefore implies that ak → λOT (α|x) as desired.

2. By definition, O is an oracle. It only remains to show that O satisfies the step
reflective conditions given in Appendix B. Consider a fixed T ∈M and x ∈ Σ∗.
Let P k = {p ∈ Q|(T, x, p) ∈ {Q1,Q2, ...Qk}}. Let Lk

α be the subset of P k for
which Õk

α(T, x, p) = 1 and Hk
α be the subset of P k for which Õk

α(T, x, p) = 0.
Because Õk is k-partially reflective, there may exist at most one point pα which
is in P k but is not in Lk

α or Hk
α. Because Õ

k takes values on a 2−k grid and Õk+1

extends Õk, pα is not in Lt
α or H t

α for any k′ ≥ k; it is not possible to reach 0
or 1 from Õk

α(T, x, pα) by extension since

|Õk′

α (T, x, pα)−Õk
α(T, x, pα)| ≤

k′−1∑
i=k

|Õi+1
α (T, x, pα)−Õi

α(T, x, pα)| ≤
k′−1∑
i=k

2−i−1 <
∞∑
i=k

2−i−1 = 2−k

This means that if any such pα exists it does not depend on k, and we will
consider only t sufficiently large so that pα is in P k but not in Lk

α or Uk
α for all

k ≥ t. We will assume without loss of generality that pα exists; otherwise the
proof is routinely simplified. By uniqueness, no point other than pα can lie in
P k−(Lk

α∪Hk
α) for any such k. Using the bounds on extensions again, Lk

α ⊆ Lk+1
α

and Hk
α ⊆ Hk+1

α . Noting that k-partial step reflectivity of each Õk requires
it is non-increasing, we must have Lk

α < Hk
α element-wise, so sup

⋃
k≥t L

k
α ≤

inf
⋃

k≥tH
k
α. Additionally,

⋃
k≥t P

k = Q∩ [0, 1] since all queries are enumerated.

This implies that (
⋃

k≥t L
k
α) ∪ (

⋃
k≥tH

k
α) = Q ∩ [0, 1]− {pα}. Therefore,

lim
k→∞

maxLk
α = sup

⋃
k≥t

Lk
α = inf

⋃
k≥t

Hk
α = lim

k→∞
minHk

α

The non-increasing property also requires that these limits are pα (in the case
that pα does not exist we use this as its definition). Because Hk

α are increasing
sets and eventually include all p < pα, for such p, 1 = limk→∞ Õk(T, x, p) =
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O(T, x, p). Similarly, O(T, x, p) = 0 for p > pα. It is also clear that λOT (α|x) ≤
pα ≤ 1 −

∑
β ̸=α λ

O
T (β|x) because the bounds are the limits of λÕ

k

T (α|x) and

1 −
∑

β ̸=α λ
Õk

T (β|x) and Õk is k-partially reflective. All that remains to show
is that

∑
α pα = 1. But the last pair of requirements for k-partial reflectivity

are that
∑

αminHk
α ≥ 1 and

∑
α maxLk

α ≤ 1. Taking the limits of both sides,
1 ≤

∑
α pα ≤ 1, so

∑
α pα = 1. Therefore, O is a reflective oracle.

Theorem 43 (limit-computable non-binary reflective oracle) There is a limit-
computable reflective oracle over any finite output alphabet.

Proof. The search algorithm produces a reflective oracle in the limit by Lemma 42.

D General Reflective Oracle Computability of

Completed Semimeasures

We have restricted our focus to step reflective oracles, but [LTF16] uses a more general
class (defined only for binary alphabets) that can randomize at any point between
λOT (1|x) and 1−λOT (0|x). The oracle no longer needs to be indexed by symbol because
the completed probability of 0 can be determined from the completed probability of
1. With this definition, there is not necessarily a unique crossover point q where
O(T, x, ·) switches from 1 to 0. However, λ̄OT (·|x) can still be defined by running a
binary search. The only complication is that the limit is no longer deterministic.

Algorithm 4 pTM CT

Input: x ∈ {0, 1}∗
Require: Random bit sequence ω
Output: y ∼ λ̄OT (·|x)
1: l, h = 0, 1
2: for i = 1, 2, ... do
3: m = l+h

2

4: if flip(O(T, x,m)) then l← m
5: else h← m
6: if ω1:i + 2−i < l then Return 1
7: else if ω1:i > h then Return 0

Let λ̄OT = λOCT
, defined in 4. On input string x ∈ {0, 1}∗, let p∗ be the limit point

of the binary search using O(T, x, ·). This is a random variable depending on the
stochasticity of queries to O. Fixing the oracle’s random choices, p∗ is the probability
(over random bits ω) that CT returns 1. This implies that the overall probability that
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CT returns 1 is λ̄OT = λOCT
= E[p∗] (with the expectation over the oracle’s responses).

Because CT halts with probability 1, λ̄OT is a measure and is O-estimable (this time
with a deterministic binary search).

E Lower Semicomputability of pTM sampled

Semimeasures

Theorem 44 (l.s.c. of pTM semimeasures) For any pTM T , λT has l.s.c. condi-
tionals.

Proof. We can see this by constructing a binary tree with each edge corresponding
to the next random bit received by T . For some sequences of random bits, T halts
after reading a prefix without requesting any further bits. If we mark the leaves of
this tree with the output of T when it halts (which is deterministic once the bits are
fixed) then λT (α|x) is the sum of the probabilities for each random string along a path
from the root to a leaf labeled with α, which is 2−l for a path of length l. Though
there are uncountably many infinite sequences of random bits, so we cannot literally
run T on all random bit sequences in parallel, we can run a breadth-first search on
the binary tree to increasing depths and sum the probabilities of each leaf marked α
encountered, so λT is l.s.c.

Theorem 45 (l.s.c. conditionals are sampled by a pTM) If µ has l.s.c. condi-
tionals, we can find a pTM T such that µ = λT .

Proof. Let ϕα(x, k) lower semicompute µ(α|x) with O access. The trick (similar to
the proof of the coding theorem [LV+08]) is to partition the interval into a list P of
subintervals, each labeled with a symbol from A. We will define some subroutines
for manipulating P by adding a new subinterval on the right of a given length and
checking whether a point is in a labeled subinterval. See Algorithm 7 for details.
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Algorithm 5 push
Input: P, α ∈ A, ∆ ∈ Q
Effect: A subinterval of label α and

length ∆ is added to P
1: left ← P[-1].right
2: P.append(label: α, right: left + ∆)

Algorithm 6 check

Input: P and ω
Effect: If ω is in a subinterval, return its

label
1: left ← 0
2: for each label, right ∈ P do
3: if left ≤ ω ≤ right then
4: return label
5: left ← right

Algorithm 7 sample

Input: ϕα, x
Require: random stream ω
Output: α ∼ µ(·|x)
1: Let P be an empty list
2: ψα ← 0
3: for k ← 1 to ∞ do
4: for α ∈ A do
5: ∆← ϕα(x, k)− ψα

6: ψα ← ϕα(x, k)
7: push(P,α,∆)

8: check(P,ω1:k)

Note that w1:k is only specified to precision 2−k. We extend the ≤ and ≥ com-
parisons against it to only succeed when they succeed in the worst case. It is fairly
easy to see that in the limit the total area of the partitions for each α is equal to
µ(α|x). Because µ is only assumed to be a semimeasure, it is possible that some of
the interval is unallocated and in this case Algorithm 7 may not halt.

F The Subjective Environment is Well-Defined

For the subjective environment σi to qualify as a true environment, it must not depend
on the strategy πi. With a bit of algebra we can show that it depends on σ and πj
for j ̸= i but not πi:

σi(e
i
T |æi

<Ta
i
T ) =

∑
æj

≤T , j ̸=i σ
π(æ≤T )∑

æj
<T ajT , j ̸=i σ

π(æ<TaT )

=

∑
æj

≤T , j ̸=i

∏T
t=1 σ

π(et|æ<tat)
∏T

t=1 σ
π(at|æ<t)∑

æj
<T ajT , j ̸=i

∏T−1
t=1 σ

π(et|æ<tat)
∏T

t=1 σ
π(at|æ<t)

=

∑
æj

≤T , j ̸=i

∏T
t=1 σ(et|æ<tat)

∏T
t=1

∏n
j=1 πj(a

j
t |æ

j
<t)∑

æj
<T ajT , j ̸=i

∏T−1
t=1 σ(et|æ<tat)

∏T
t=1

∏n
j=1 πj(a

j
t |æ

j
<t)

=

∏T
t=1 πi(a

i
t|æi

<t)
∑

æj
≤T , j ̸=i

∏T
t=1 σ(et|æ<tat)

∏T
t=1

∏
j ̸=i πj(a

j
t |æ

j
<t)∏T

t=1 πi(a
i
t|æi

<t)
∑

æj
<T ajT , j ̸=i

∏T−1
t=1 σ(et|æ<tat)

∏T
t=1

∏
j ̸=i πj(a

j
t |æ

j
<t)
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=

∑
æj

≤T , j ̸=i

∏T
t=1 σ(et|æ<tat)

∏T
t=1

∏
j ̸=i πj(a

j
t |æ

j
<t)∑

æj
<T ajT , j ̸=i

∏T−1
t=1 σ(et|æ<tat)

∏T
t=1

∏
j ̸=i πj(a

j
t |æ

j
<t)

As desired, all appearances of πi cancel.
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